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Abstract

We describe a software implementation for interactive visualization
of a wide class of discrete groups. In addition to familiar Euclidean
space, these groups act on the curved geometries of hyperbolic
and spherical space. We construct easily computable models of
our geometric spaces based on projective geometry; and establish
algorithms for visualization of three-dimensional manifolds based
upon the close connection between discrete groups and manifolds.
We describe an object-oriented implementation of these concepts,
and several novel visualization applications. As a visualization
tool, this software breaks new ground in two directions: interactive
exploration of curved spaces, and of topological manifolds modeled
on these spaces. It establishes a generalization of the application of
projective geometry to computer graphics, and lays the groundwork
for visualization of spaces of non-constant curvature.

CR Categories and Subject Descriptors : I.3.3 [Picture/Image
Generation] display algorithms I.3.5 [Computational Geometry and
Object Modeling Graphics]: geometric algorithms, hierarchy and
geometric transformations, I.3.7 [Three dimensional Graphics and
Realism] color, shading, shadowing, and texture

Additional Key Words and Phrases: discrete group, tessel-
lation, quotient space, projective geometry, hyperbolic geometry,
spherical geometry, curvature, geodesic.

1 Discrete Groups

Symmetry, broadly speaking, implies a redundant supply of infor-
mation. A mirror image contains the same information as the scene
that it mirrors. The theory of discrete groups has been developed
over the past 100 years as a formalization of the process of extract-
ing a single copy of the information present in symmetric config-
urations. The discrete groups which we study here are groups of
motions which act on a geometric space, such as Euclidean space,
to produce tessellations by congruent non-overlapping cells. Fa-
miliar examples include wallpaper patterns, and the interlocking
designs of M. C. Escher. We consider two simple examples before
introducing mathematical definitions.

�Current address: SFB 288, MA 8-5, Technische Universit�at, Strasse des
17 Juni 136, 1 Berlin 12, Germany, gunn@sfb288.math.tu-berlin.de

1.1 The circle and the line

When we evaluate the expression sin (2�x)we are only interested in
x mod 1, since sin is a periodic function: sin(2�x) = sin(2�(x+
k)), where k is an integer. The set of all motions of the real line
R by integer amounts forms a group �, which leaves invariant the
function sin(2�x). We can form the quotient R=�, which is the set
of equivalence classes with respect to this group. This quotient can
be represented by the closed interval [0;1], with the understanding
that we identify the two endpoints. But identifying the two endpoints
yields a circle. Once we know the values of sin (2�x) on the circle,
we can compute it for any other value y, simply by subtracting or
adding integers to y until the result lies in the range [0;1).

In this example the discrete group � is the set of transformations
of R given by all translations x! x+ k , where k is an integer. �
is discrete since no non-trivial sequence in � converges to the the
identity element. The quotient ofR under this action is S1, the unit
circle. We write R=� = S1.
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Figure 1: The circle is the quotient of R by the integers.

I = [0;1) is a fundamental domain for this group action. We
can recover R from the fundamental domain and �: the union[

g2�
gI

covers R without overlap.
We move into two dimensions to bring out other features of the

concepts introduced in this example.

1.2 The torus and the plane

Instead of R we now work with R2. Let � be the group of trans-
lations of R2 generated by (x; y) ! (x + 1; y) and (x;y) !
(x; y + 1), that is, unit translations in the coordinate directions.
What is the quotient R2=�? Instead of the unit interval with its
endpoints identified, we are led to a unit square that has its edges
identified in pairs. If we imagine the square is made of rubber and
that we can perform the identifications by bending the square and
gluing, we find that the resulting surface is the torus T 2 . See Figure
2.
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Figure 2: Making a torus from a square

1.3 Algebra and geometry: the fundamental group

A key element of this approach is the interplay of algebraic and
geometric viewpoints. To clarify this, we introduce the fundamental
group of a space, formed by taking all the closed paths based at some
point P in the space. We get a group structure on this set: we can
add paths by following one and then the other, and subtract by going
around the second path in the reverse order. The zero-length path
is the identity element. If one path can be moved or deformed to
another path, the two paths correspond to the same group element.
It is easy to check that different P ’s yield isomorphic groups. We
say a space is simply connected if every closed path can be smoothly
shrunk to a point, like a lasso, without leaving the space. [Mun75]
The fundamental group of a simply connected space consists of just
the identity element.

In the above example R2 is simply connected; while T 2, the
quotient, isn’t. When X is the quotient of a simply connected
space Y , we say that Y is the universal covering space of X .
The importance of simply connected spaces in the study of discrete
groups is due to a basic result of topology that (subject to technical
constraints which we will consider satisfied) every space has a
unique universal covering space [Mun75]. So in considering group
actions, we need only consider actions on simply connected spaces.

The interplay of algebra and geometry reveals itself in the fact
that the fundamental group of the quotient, a purely topological
object, is isomorphic to the group of symmetries �, which arises in
a purely geometric context.

1.4 Inside versus Outside Views

In the cases we will consider, the universal covering space X is a
geometric space, that is, it comes equipped with a metric that deter-
mines distance between points and angles between tangent vectors.
In this case we sometimes refer to X as a model geometry. This
metric allows us to compute geodesics, or shortest paths, between
points in the space [Car76]. The quotient space inherits this metric.
R2 is the universal covering space of T 2: if we unroll T 2 onto R2,
the copies of the torus will cover the plane completely, without over-
lap. We say these copies tessellate the plane. For some purposes
the rolled-up torus sitting inR3 is useful, but to gain the experience
of what it is like to live inside the surface, we are better served by
examining the tessellation of the universal covering space produced
by the group.

For example, if we want to make pictures of what an inhabitant

of T 2 sees, we will make them in R2: Light follows geodesics,
which appear to be very complicated on the rolled-up torus, but
in R2 are just ordinary straight lines. A complicated closed path
based at P which wraps around the torus several times unrolls in the
universal cover to be an ordinary straight line connecting P and hP
for someh 2 �. See Figure 3. An immediate consequenceof this is
that an observer on the torus based at P sees many copies of himself,
one for every closed geodesic on the surface passing through P . For
example, if he looks to the left he sees his right shoulder; if he looks
straight ahead he sees his back. See [Wee85] for a complete and
elementary description of this phenomenon. We say the rolled-up
torus represents the outsider’s view; while the unrolled view we
term the insider’s view, since it shows what someone living inside
the space would see. The importance of the insider’s view becomes
more telling in three dimensional spaces, since to “roll up” our
fundamental domains requires four or more dimensions. In this
case the insider’s view becomes a practical necessity.
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Figure 3: Outside and inside views of a complicated torus
path

When we try to perform the analogous construction for the two-
holed torus, instead of a square in the Euclidean plane R2, we are
led to a regular octagon in the hyperbolic plane H2[FRC92]. We
describe hyperbolic geometry in more detail below.

1.5 Definition of discrete group

A discrete group is a subgroup � of a continuous group G such that
there is a neighborhood U of the identity in G with U \� = I , the
identity element.

In the example of the torus above, the group � acts onR2. Such
an action on a topological space X is called properly discontinuous
if for every closed and bounded subset K of X , the set of 
 2 �
such that 
K \K 6= � is finite. In the cases to be discussed here,
� is discrete if and only if the action of � is properly discontinuous.

If in addition the quotient space X=� is compact, we say that �
is a crystallographic , or crystal, group.

The group of the torus discussed in 1.2 above is a crystallo-
graphic group, the simplest so-called wallpaper group. There are
exactly 17 wallpaper groups of the Euclidean plane. See [Gun83]
for a full discussion of this case and the details of a computer im-
plementation.

1.6 Dirichlet domains

Given a discrete group, there is a technique for constructing a funda-
mental domain, known as a Dirichlet domain. We define it now for
future reference. Given a discrete group � acting on a space X and
a pointP 2 X , the orbitO(P ) ofP under� is

S
g 2�

gP . Then the
Dirichlet domain with respect to P is the set of points in X which
are closer to P than to any other point of O(P ). We can be more
precise. For each Q 2 O(P ), construct the perpendicular bisector
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Figure 4: (235), (236) and (237) triangle groups tessellate S2; R2, and H2.

M of the segment PQ. Denote by HQ the half-space containing P
bounded by M . Then the Dirichlet domain DP determined by �
and P is \

Q2O(P )
HQ

In practice, for many of the groups the intersection can be assumed
to involve only finitely many HQ’s. The resulting polyhedron is
convex. If a face F is determined by g 2 �, then g�1F will
be a congruent face F 0 determined by g�1. This face pairing is
used in the sequel. Note that, since DP depends upon P , there
are potentially many different shapes for the Dirichlet domain for a
given group. [Bea83] Computational geometers may recognize that
a Dirichlet domain with respect to P is a Voronoi cell with respect
to the orbit of P .

2 Non-Euclidean Geometries

In the examples above, the model geometry was Euclidean. There
are two other simply connected two-dimensional spaces in addition
to R2 which can serve as our model geometries: the sphere S2 and
the hyperbolic plane H2. They have geometries (to be described
in more detail below) which satisfy all the postulates of Euclidean
geometry except for the Parallel Postulate: Given a line L and a
point P not on L, there is a unique line M passing through P which
is parallel to L. The sphere has no parallel lines; while H2 has
infinitely many for a given L and P . See [Cox65] for an account of
the discovery and development of these non-Euclidean geometries.

An equivalent characterization of Euclidean, spherical, and hy-
perbolic geometry is that the sum of the angles of a triangle is,
respectively, equal to, greater than, or less than, �. Figure 4
shows tessellations of these three spaces by triangles with angles
(�=2; �=3; �=n), where n = (5; 6; 7) yields spherical, Euclidean,
and hyperbolic space.

We now turn to demonstrating models for these three geometries
which share a common root in projective geometry. This will lead
directly to techniques for visualizing discrete groups which act on
these spaces.

2.1 Projective geometry

Projective geometry is the geometry of lines without regard to dis-
tance or measure. It was discovered at roughly the same time as
the the non-Euclidean geometries discussed above; we show in the
sequel how it can be considered to be the fundamental geometry out

of which the other geometries arise. 1

The projective plane P 2 is gotten from the ordinary plane by
adjoining a line at infinity. Projective space Pn can be constructed
in every dimension n by adjoining an n�1 dimensional hyperplane
at infinity. We assume the reader is familiar with homogeneous co-
ordinates for projective space [Cox65]. The group of self-mappings
of projective space Pn can then be represented via homogeneous
coordinates as elements of the matrix group PGL(R;n + 1), the
projective general linear group. This group consists of all invertible
matrices of dimension (n+ 1)� (n+ 1), where two matrices are
equivalent if one is a scalar multiple of the other [Cox87]. Much of
the success of the approach described in this paper is due to the cir-
cumstance that many computer graphics rendering transformation
pipelines support PGL(R; 4).

2.2 From projective to metric geometry

Projective geometry does not include a notion of distance or angle
measure. However, every projective transformation preserves a
quantity known as the cross ratio . The cross ratio is a function of
four collinear points:

�(AB;CD) =
(A�C)(B �D)

(B �C)(A�D)

Here the points are represented by a homogeneous coordinate sys-
tem on their common line; for convienience we can assume this is
ordinary Euclidean measure on the line. This invariant has been
used by Cayley to construct metric geometries on the foundation of
projective geometry [Cay59].

First choose a homogeneous conic Q which is to be invariant.
The conic is known as the Absolute for the associated geometry.
The projective transformations preserving Q form a subgroup H of
the full projective group. Two given points P0 and P1 determine
a line, which intersects the conic Q in a pair of points T0 and
T1, whose coordinates may be complex numbers. Then define a
distance function

d(P0; P1) = K log�(T0T1; P0P1) (1)

where the constant K is determined according to the nature of Q
in order to make the distance function real. Since the cross ratio is
a multiplicative function, use of the log function yields an additive
function. Measurement of angles between lines L0 andL1 proceeds

1See Appendix A.1
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in like manner, by determining the two tangent lines to Q which lie
in the pencil of lines determined by L0 and L1.

This yields models for spherical, hyperbolic, and Euclidean
geometry which share the same straight lines; what is different
is how distance along them and between them is measured. The
subgroup H becomes the isometry group for the metric geometry.

We will for simplicity’s sake work in two dimensions, that is,
with homogeneous coordinates (x;y;w), and consider only distance
measurement, not angle measurement. All our results generalize
directly to arbitrary higher dimension. Since the cases of spherical
and hyperbolic geometry are more straightforward, we begin with
them.

2.2.1 Spherical geometry

For the spherical case, we choose Q to be the totally imaginary
conic x2 + y2 + w2 = 0. The proper choice for K is i=2. We
can derive from Q an inner product between pairs of points: if
P0 = (x0; y0; w0) and P1 = (x1; y1; w1) then P0:P1 = x0x1 +
y0y1 + w0w1. Then (1) reduces to:

d(P0; P1) = arccos(
P0:P1p

(P0:P0)(P1:P1)
)

This is the familiar measurement between points on the unit sphere.
Projective transformations which preserve Q constitute the special
orthogonal group SO(3), the group of rotations of three-dimensional
Euclidean space. Although it is tempting to consider the familiar
picture of S2 sitting isometrically in R3, it is more appropriate to
think of the model presented purely in terms of P 2. In this model,
to each point of P 2 we assign two antipodal points of S2.

2.2.2 Hyperbolic geometry

For the hyperbolic case,we choose Q to be the totally real conic x2+
y2�w2 = 0, a cone aligned with the w-axis. The correct choice for
K is 1

2 . The derived inner product of two points P0 = (x0; y0; w0)
and P1 = (x1; y1; w1) is then P0:P1 = x0x1 + y0y1 � w0w1,
sometimes called the Minkowski inner product. Our model for
hyperbolic geometry will consist of the interior of this cone, where
P:P < 0. Then (1) reduces to:

d(P0; P1) = arccosh(
P0:P1p

(P0:P0)(P1:P1)
)

where P0 and P1 lie in the interior of the cone. The isometry group
is SO(2,1), the so-called Minkowski group.

Consider the hyperboloid of two sheets H , defined by the con-
dition P:P = �1. Just as the unit sphere is a model for spherical
geometry, the upper sheet of H is a model for hyperbolic geometry.
The most convenient model for H2 is hidden within H . Consider
the plane w = 1. It intersects Q in a circle that bounds a disk
D. We can project our hyperboloid H onto D from the origin.
This projection respects the distance function defined above (it is,
after all, a projective invariant). Then D is a model of hyperbolic
geometry, the so-called Klein or projective model. It is shown in
the right-most figure in Figure 4. In three dimensions, this yields
a model of H3 as the interior of the unit ball in R3. There are
several other commonly used models of hyperbolic geometry, most
notably the Poincar�e or conformal model [Bea83]. Our choice of
the projective model here was determined by the fact that it yields
the correct results for visualizing the insider’s view.

2.2.3 Euclidean geometry

Euclidean, or parabolic, geometry arises when apply a limiting
process to the conic �(x2+y2)+w2 = 0. As �! 0, the expression
for distance reduces to

d(P0; P1) =
p

(x0 � x1)2 + (y0 � y1)2

where P0 andP1 have been dehomogenized. The isometry group of
this geometry E(2) is the semi-direct product of SO(2), the circle,
and R(2), the two-dimensional Euclidean translation group.

2.3 Comments

This development in terms of projective geometry is given fully
in [Woo22] and is due to Cayley and Klein. For a treatment de-
rived from the modern differential geometric viewpoint see [Car76];
for an implementation description following this viewpoint see
[Gun92].

To justify the use of the names spherical and hyperbolic it is
worthwhile to verify that the geometries induced by the indicated
metrics on the indicated subspaces in fact yield geometries which
behave correctly with respect to parallel lines and sums of angles of
triangles.

For a detailed discussion of how to construct isometries of hy-
perbolic 3-space in the projective model discussed here see [PG92].
2

The above results, stated for the two-dimensional case, can be
extended to arbitrary dimension.

3 Manifolds and Discrete Groups

An n-dimensional manifold, or n-manifold, is a topological space
X such that X is locally homeomorphic to Rn, that is, every point
of X has a neighborhood that can be mapped 1-1 and continuously
onto a small ball in Rn. If in addition we can realize X as the
quotient of a geometric space M by a discrete group, we say that
X has a geometric structure modeled on M . A related concept to
that of manifold is orbifold. An orbifold is like a manifold, but it
may have singular points where it is locally homeomorphic not to
Rn but rather to the quotient of Rn by a finite group. Orbifolds
arise, generally speaking, when the elements of the discrete group
have fixed points, such as rotations or reflections.

Initial work on the connection of discrete groups and theory
of manifolds was done by Henri Poincar�e in the 1880’s. To this
day much research in this field is driven by the Poincar�e Conjec-
ture, which asserts that a closed, connected, simply connected 3-
dimensional manifold is homeomorphic to the 3-dimensional sphere
S3. This conjecture is closely related to the classification problem:
making a list of all 3-manifolds. For example, in dimension 2,
there is a uniformization theorem which says that any closed 2-
dimensional manifold has a geometric structure modeled on one of
S2, R2, orH2. Recent work by Thurston and others has shown that
many (possibly all) 3-manifolds have essentially unique geometric
structures. That is, there are good reasons to believe that to every
3-manifold there corresponds an essentially unique discrete group
[Thu82].

The geometric structures for 3-manifolds come from eight
model geometries: R3, S3, and H3 plus five additional simply
connected spaces. The additional five are not as nice as the first

2See Appendix A.2.
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three, since they are not isotropic: not all directions in space are
the same. In any case, the most prevalent geometric structure is
hyperbolic. The current software implementation does not support
these five additional geometries.

In the discussion that follows, we will concentrate on the in-
sider’s, rather than the outsider’s, view of three dimensional orb-
ifolds. That is, we will look at the tessellations of the simply
connected space (Euclidean, hyperbolic, or spherical) induced by
discrete groups.

4 Software Implementation

4.1 OOGL

In order to visualize the spaces under consideration, we have de-
veloped an implementation within an object-oriented graphics li-
brary, OOGL. The generic OOGL class is Geom. Subclasses in-
clude include geometric primitives such as PolyList, Vect,
Bezier, and Mesh; and organizational objects such as List
and Inst (for instancing geometry). Methods with which Geoms
come equipped include: Bound, Create, Copy, Delete,
Save, Load, Pick, and Draw .

An interactive viewer, Geomview [MLP+], has been con-
structed based upon OOGL. It supports viewing in the three geome-
tries discussed above: Euclidean, hyperbolic, and spherical. This is
possible since as noted above isometries in the three geometries can
be expressed as elements of PGL(R; 4). The underlying low-level
graphics libraries (in the case of OOGL, GL or Renderman 3 ) sup-
port the use of elements of PGL(R; 4) for modeling and viewing
transformations. This is a result of the fact that PGL(R; 4) is the
smallest group which contains both the Euclidean isometries and
the perspective transformation. The visualization task is also made
easier by the fact that OOGL supports 4-dimensional vertices within
all primitives. This provides a base for creating geometric models
in hyperbolic and spherical space using homogeneous coordinates.

4.2 Shading

We have established how it is possible to implement non-Euclidean
isometries using standard projective transformations. We have not
addressed the question of correct lighting and shading of surfaces in
these spaces. Indeed, the standard shading algorithms (in contrast
to the standard transformations) are implicitly Euclidean. In or-
der to model the behavior of light correctly in these non-Euclidean
spaces, it is necessary to provide customized shaders which replace
the default ones. This has been successfully achieved within the
Renderman shading language [Ups89],[Gun92]. Figure 5 shows a
view inside hyperbolic space from the movie “Not Knot”. Interac-
tive software shaders for OOGL for hyperbolic and spherical space
have also been written.

These custom shaders use the expressionsfor distance and angle
described in 2.2 to replace the Euclidean ones. Additionally, the
decay of light intensity as a function of distance depends on the
formula for the surface area of a sphere in each space. That is,
the amount of light falling on an area element at distance d from
a light source will be inversely proportional to the total area of the
sphere with radius d. For example, in hyperbolic space light decays
exponentially: the area of a sphere of radius r is given by k sinh(r)

3GL is a trademark of Silicon Graphics, Inc.; and Renderman, of Pixar.

Figure 5: A view of the tessellation of hyperbolic space
by regular right-angled dodecahedra, as in the movie “Not
Knot”. This image was rendered using Renderman.

and sinh(r) � exp(r) for large r. The shaders used to create figures
6 and 9 also involve a term to model fog. 4

5 The DiscreteGroup class

The DiscreteGroup class is a subclass of Geom. The min-
imal data includes a set of generating isometries represented by
elements of PGL(R; 4) and some geometric data, represented by
other OOGL objects. The DiscreteGroup class supports the
standard methods listed above, and other methods of its own.

Because of the close connection to manifolds outlined in Section
3, it can also be thought of as a Manifold class. Many design
decisions were made to support visualization of the insider’s view
of a manifold. From this point of view, every element of the scene
description belongs to the manifold and hence should be tessellated
by the group in the process of creating the insider’s view. We have
departed from this philosophy in one important respect: we do not
tessellate the lights contained in the scene description. To do so
would have sacrificed interactivity for a questionable increase in
authenticity.

Points of interest among DiscreteGroupmethods include:

5.1 File format

There is an ascii file format for loading and saving discrete groups.
5 This format supports the three geometries described above, and
includes lists of generators and group elements and also geometric
objects for display within the tessellation.

5.2 DiscreteGroupDraw

Each DiscreteGroup instance includes a list of group elements
and a collection of other Geoms. The general algorithm transforms
eachGeom by each group element and then draws it. There are some
subtleties. Most of these groups are infinite, but we only compute
and store a finite list of elements at any time. One of the difficulties

4See Appendix A.3.
5See Appendix A.4.
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Figure 6: A view inside the Euclidean orbifold from “Not
Knot” with the camera as a paper airplane.

of navigating in the tessellations produced by discrete groups is
that normal flight tends to wander to the edge of the computed
tessellation. To solve this problem, the DiscreteGroup object
is provided with an automatic centering mechanism. It detects when
the camera leaves the Dirichlet domain defined by the group, and
moves the camera by an isometry (determined by the face-pairings),
to stay within this central region. Note that since lighting is not
tessellated, lights must be defined within the camera coordinate
system in order that lighting is invariant under this movement.

Another added feature is that there is a separate associated Geom
which represents the camera, or observer. Before being tessellated
it is moved to the location of the camera, which as described above
is constrained to stay within the Dirichlet domain. The observer
then becomes aware of his own movement in the space. This is
an important feature especially for detecting the singular locus of
orbifolds. For example, when the camera approaches a axis of
symmetry of order n in an orbifold, this fact is made clear by the
approach of n � 1 other copies of the camera to the same axis, a
symmetry which the geometry of the Dirichlet domain alone may
not reveal.

5.3 DiscreteGroupEnum(int constraint() )

is a method for enumerating lists of group elements given the gen-
erators. One such list is used by the draw routine: it defines which
copies of the fundamental domain to draw. The constraint func-
tion accepts a single group element and returns 0 or 1 according
to whether it satisfies its criteria. For example, a matrix may be
rejected if it moves the origin far, its determinant is small, or its
expression as a word in the generating elements is long. This enu-
meration software uses software acceleration provided by the theory
of automatic groups [ECH+91], [Lev92] if an automatic structure
has been provided for the discrete group.

Figure 7: A typical session of Maniview showing some of
its panels but hiding Geomview panels.

5.4 DiscreteGroupDirDom

creates a fundamental domain using the Dirichlet domain algorithm
described above. This is useful for exploring groups for which
no other geometry has been provided. For display purposes, both a
wire-frame of the full polyhedron and a possibly scaled version with
faces colored to reflect the face-pairing identities are drawn. See
Figure 9. The user can deduce features of the group by examining
the face-pairing patterns, or by moving the distinguished point P .

6 Example applications

A variety of applications have been developed based on the
DiscreteGroup software class.

Maniview is short for Manifold Viewer. In the paradigm
of object-oriented software tools, it is essentially an Inspector for
the class DiscreteGroup . Maniview communicates with
Geomview via a two-way pipe. Geomview reads the description
of the discrete group output by Maniview and displays it. The
user typically loads a discrete group into Maniview, and then
manipulates the discrete group via a set of control panels. These
panels are grouped into: display settings, enumeration of group
elements, choice of fundamental tile, and savingand loading various
elements. A typical snapshot of a Maniview session is shown in
Figure 7.

One of the milestones in the theory of discrete groups was
the enumeration of the 230 crystal groups in three dimensional
Euclidean space at the end of the nineteenth century. For a sur-
vey see [LM78],[Sch80]. eucsyms, an interactive application
which allows the exploration of these groups has been developed
by Olaf Holt at the Geometry Center, and adapted to use the
DiscreteGroup software. eucsyms is connected by a two-
way pipe with Maniview. Euclidean crystal groups can be written
as a semi-direct product of a translation subgroup and a finite sub-
group of SO(3), a point group. The structure of eucsyms reflects
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Figure 8: A snapshot of a session using eucsyms, an appli-
cation for exploring the 230 Euclidean crystal groups. This
figure shows an earlier version of eucsyms than that de-
scribed in the paper. See the paper version for an up-to-date
figure.

this decomposition. Choice of group proceeds by first choosing the
lattice which the translation subgroup leaves invariant (one of seven
lattice types), then choosing the point group, finally choosing the
particular semi-direct product of the two. Figure 8 shows a view
inside the symmetry group r3.

We have also hooked up Maniview to a powerful program for
computing hyperbolic structures on three dimensional manifolds,
snappea by Jeff Weeks [Wee]. This is a popular tool used by
research topologists to construct and examine three dimensional
manifolds.

Geomview, Maniview, eucsyms, and snappea are all
available via anonymous ftp from geom.umn.edu [128.101.25.35].
Some of the computation of the groups and geometrical models
shown in the figures have been computed using a Mathematica
6 package developed at the Geometry Center, also available via
anonymous ftp from the same site.

7 Example spaces

7.1 “Not Knot”

The mathematical animation “Not Knot” [GM91] pioneered the vi-
sualization of the insider’s view of hyperbolic space. It features one
Euclidean orbifold (see Figure 6) and a series of hyperbolic orb-
ifolds converging to a hyperbolic manifold that is the complement
of the three linked circles known as the Borromean rings. Figure 5
shows one of these orbifolds, which tessellates H3 with right-angled
dodecahedra. One of the six generators is a rotation of �

2 around

6Mathematica is a trademark of Wolfram Research, Inc

Figure 9: A view of the 120-cell. We reduce the size of the
shaded polyhedra but draw the original edges.

the large red axis. As a matrix this generator is:0
B@
�1:618033 1:618033 0 �2:058171
�1:618033 0 0 �1:272019
0 0 1: 0
2:058171 �1:272019 0 2:618033

1
CA

Note that all the non-zero entries are powers of the golden ratio.
This is an example of an arithmetic group and is of particular math-
ematical interest.

The discrete groups underlying “Not Knot” have been converted
into the DiscreteGroup format. Now, viewers interested in
exploring the spaces depicted in “Not Knot” can do so.

7.2 The Poincar�e homology sphere

Possibly the most famous three dimensional spherical manifold is
the so-called Poincar�e homology sphere. It arises abstractly by
identifying the opposite faces of a regular dodecahedron with a
twist of �=5. 7

The tessellation of S3 corresponding to this manifold consists
of 120 regular dodecahedra, which meet 3 around each edge, and
is known as the 120-cell or dodecahedral honeycomb [Cox73]. In
contrast to the right-angled dodecahedronof hyperbolic space, these
dodecahedra have dihedral angles of 2�

3 .
An inside view of this manifold appears in Figure 9. Note

that the largest dodecahedron, which completely fills the view as if
it surrounds the viewer, is also the farthest away. This is a typical
feature of life in spherical space; as objects move away they decrease
in size until they reach a maximum distance of �=2, then they begin
to increase in size until they reach the antipodal point of the viewer
at a distance of �, where they expand to fill completely the field of
view, since every geodesic leaving the observer also passes through
the antipodal point. Stereo viewing in spherical space would place
great strain on Euclidean trained eyes: when an object is exactly at
the equator, the lines of sight from an observer’s eyes are parallel;

7See Appendix A.5.
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as an object moves beyond the equator, the observer must look
"anti-crosseyed" at it.

8 Directions for further work

Common ancestry in projective geometry means that some impor-
tant procedures can be shared with traditional Euclidean systems.
However, there remain a host of computer graphics issues related to
modeling and animation in non-Euclidean spaces to be addressed.
Many geometric constructions are very different. For example,
consider a equidistant curve, that is, the set of points equidistant
from a line. In the Euclidean plane an equidistant curve is a par-
allel line. But equidistant curves in spherical and hyperbolic space
are not straight lines. What, then, is the proper generalization of
a cylinder in these spaces? Also, neither space allows similarity
transformations: changing the size of an object changes its shape!
Other questions arise. What sort of harmonic analysis is available to
synthesize fractal terrains and textures in these spaces? If we hope
to do physically-based modeling in these spaces, we need to expand
our understanding of the laws of physics beyond the behavior of
light described above in relation to shading. Finally, the theory of
splines in non-Euclidean spaces was explored in [GK85].

In the area of topological content, one obvious goal is to im-
plement the five non-isotropic three dimensional model geometries.
Also, there are many sorts of discrete groups, particularly those
that create fractal patterns, which do not fit neatly into the current
framework.

In the direction of mathematical research and user interface, the
efforts described here suggest various techniques for exploring 3-
manifolds. Connecting this software with virtual reality technology
would allow the researcher to perform a variety of explorations of
the space. The use of sound also promises to yield useful evidence.

Looking at the wider world of Riemannian geometry, this work
is one step in the direction of visualizing arbitrary curved spaces,
the Riemannian manifolds that figure centrally in relativity and
cosmology. For related work see [HD89].

Finally, this work opens a new domain for artistic creativity,
three dimensional analogues of M. C. Escher’s dramatic interlocking
planar tessellations.

9 Conclusions

Approaching metric geometries via their common ancestry in pro-
jective geometry yields simple models which can be directly imple-
mented in existing rendering systems. The resulting systems allow
interactive navigation of curved spaces for the first time. Custom
shaders provide realistic rendering of the insider’s view. Methods
for manipulating and displaying discrete groups allow interactive
exploration of a wide class of topological manifolds modeled on
these spaces, that have never been visualized before. The resulting
system provides a unique tool for mathematicians, educators, and
scientists and artists whose work is related to spatial symmetry.
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A Appendices for CD-ROM

The following sections were deleted from the printed version of the
paper due to space limitations that are not present in this CD-ROM
version.

A.1 More on projective geometry

The main contributors to projective geometry include Poncelet, von
Staudt, Cayley, and Klein [Boy68].

Projective geometry is distinguished by a perfect duality be-
tween point and line; every two points determine a line; but equally
surely, every two lines determine a point, the point of intersection.
"Parallel" lines also intersect in a point, a point at infinity. Conse-
quently, every theorem has a dual version in which point and line are
reversed. Projective space Pn can be constructed in every dimen-
sion n by adjoining an n � 1 dimensional hyperplane at infinity.
After we adjoin these points, they have no special status. A full
account can be found in [Cox65].

Coordinates in the projective plane arise from the choice of a
triangle of reference. Then every point can be written as a weighted
sum (xX + yY + wW ) where X,Y,W are the vertices of the tri-
angle of reference, and its coordinates are the vector (x; y;w). By
definition, (�x; �y; �w) = (x; y; w) for any non-zero �. If the
triangle of reference is chosen to include the Cartesian origin as one
vertex, the line at infinity as the opposite side, and the other two
sides are perpendicular to each other, we arrive at homogeneous
coordinates for the Euclidean plane, in which we can choose � so
that w = 1 except for points on the line at infinity. The resulting
(x; y) coordinates are the familiar Cartesian coordinates [Woo22].

A.2 Constructing Isometries

Note that it is possible to express the Absolute Q as a symmetric
matrix. For example, for the hyperbolic plane

Q =

 
1 0 0
0 1 0
0 0 �1

!

Then the Minkowski inner product P0:P1 = P0QP
t
1 , where P t

1 is
the column vector form of P1.

All isometries in these geometries may be constructed as prod-
ucts of reflections [Cox65]. We consider a reflection in a hyperplane
L in Hn. This hyperplane determines a 1-dimensional orthogonal
subspace N (orthogonal with respect to the Minkowski inner prod-
uct!). After normalizing N , the reflection in L acting on a point x
can be expressed as x� 2(x:N)N . We can write this as a matrix,
x0 = xA with Aij = Iij � 2NiQiiNj where Q is the matrix form
of the Absolute. Similar expressions apply for reflections in Rn and
Sn .

A.3 Spherical space caveats

There are some details to the implementation of visualization in S3

which deserve mention. They reflect the fact that each point of Pn

corresponds to a pair of antipodal points on Sn . The behavior of the
rendering system in this situation depends on how the conversion
from homogeneous coordinates into 3D is done. In some systems,
points with w < 0 are negated to force w � 0, then clipping
is performed. This essentially collapses S3 onto P 3. The other
alternative is that the region w < 0 is treated separately from
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w � 0; typically, clipping is done so that line segments are clipped
to lie within the latter region. This is preferable for visualizing S3.
The result is that half the sphere, where w < 0, is invisible at any
moment. This can be arranged to be the hemisphere that is behind
the camera. See [FvDFH90] for a discussion of homogeneous
clipping.

A.4 Sample data file

The following is a sample DiscreteGroup data file
borrom2.dgp, which describes the Euclidean orbifold shown
in Figure 6.

# Comments are delimited by ’#’s.
DISCGRP # Class Identifier
(group borrom2 ) # Group name
(comment " Order 2 Borromean orbifold. " ) # Arbitrary comment
(attribute Euclidean ) # { Euclidean | hyperbolic | spherical }
(enumdepth 4 ) # Length of words in generators to compute
(enumdist 10.0 ) # No group element that moves origin > 10
(dimn 3 ) # Dimension of the underlying space
(ngens 6 ) # Number of generators
(gens # List of generators with symbolic names
# The generators are 6 180 degree rotations around axes lying on centers
# of the sides of a cube of side-length 1.0.
# a is rotation around line parallel to z-axis, passing through (.5, 0, 0).
a
-1 0 0 0
0 -1 0 0
0 0 1 0
1 0 0 1
# ditto for d, through (-.5, 0, 0)
d
-1 0 0 0
0 -1 0 0
0 0 1 0
-1 0 0 1
# b rotates a line parallel to x-axis, through point (0, .5, 0)
b
1 0 0 0
0 -1 0 0
0 0 -1 0
0 1 0 1
# ditto for e, through (0, -.5, 0)
e
1 0 0 0
0 -1 0 0
0 0 -1 0
0 -1 0 1
# etc.
c
-1 0 0 0
0 1 0 0
0 0 -1 0
0 0 1 1

f
-1 0 0 0
0 1 0 0
0 0 -1 0
0 0 -1 1

)
# distinguished point for Dirichlet domain computation
(cpoint 0.000000 0.000000 0.000000 1.000000 )
# geometry to use to represent the camera: a paper airplane
(camgeom
{ = OFF # see man 5 OOGL for this file format
5 2 5

0 0 0
-0.1 0 0.5
0.1 0 0.5
0 -0.1 0.5
0 0.1 0.5

3 0 1 2 200 200 0 .8
3 0 3 4 0 200 200 .8
}
) # end of DiscreteGroup format file

A.5 More on the 120-cell

Each of its six generators moves a face of one dodecahedra so it
lines up with its opposite face; a typical generator looks like:0

B@
0:809017 0:5 0 0:309017
�0:5 0:809017 0:309017 0
0 �0:309017 0:809017 0:5
�0:309017 0 �0:5 0:809017

1
CA

Its first homology group is trivial, hence the name. (The first ho-
mology group is a commutative version of the fundamental group.)

Originally Poincar�e had stated his famous conjecture in terms of
the first homology groups, and this manifold had provided the im-
portant counterexample which led to the revised conjecture into its
current form.
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