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Abstract

We describeasoftware implementation for interactive visualization
of awide classof discretegroups. In addition to familiar Euclidean
space, these groups act on the curved geometries of hyperbolic
and spherical space. We construct easily computable models of
our geometric spaces based on projective geometry; and establish
algorithms for visualization of three-dimensional manifolds based
upon the close connection between discrete groups and manifolds.
We describe an object-oriented implementation of these concepts,
and severa novel visualization applications. As a visuaization
tool, this software breaks new ground in two directions: interactive
exploration of curved spaces, and of topol ogical manifoldsmodeled
on these spaces. It establishes a generalization of the application of
projective geometry to computer graphics, and laysthe groundwork
for visualization of spacesof non-constant curvature.

CR Categoriesand Subject Descriptors: 1.3.3 [Picture/lmage
Generation] display algorithms1.3.5 [Computational Geometry and
Object Modeling Graphics]: geometric algorithms, hierarchy and
geometric transformations, 1.3.7 [Three dimensional Graphics and
Realism] color, shading, shadowing, and texture

Additional Key Words and Phrases: discrete group, tessel-
lation, quotient space, projective geometry, hyperbolic geometry,
spherical geometry, curvature, geodesic.

1 Discrete Groups

Symmetry, broadly speaking, implies a redundant supply of infor-
mation. A mirror image containsthe sameinformation asthe scene
that it mirrors. The theory of discrete groups has been developed
over the past 100 years as aformalization of the process of extract-
ing a single copy of the information present in symmetric config-
urations. The discrete groups which we study here are groups of
motions which act on a geometric space, such as Euclidean space,
to produce tessellations by congruent non-overlapping cells. Fa-
miliar examples include wallpaper patterns, and the interlocking
designsof M. C. Escher. We consider two simple examples before
introducing mathematical definitions.

Permission to copy without fee al or part of this material is granted
provided that the copies are not made or distributed for direct
commercia advantage, the ACM copyright notice and thetitle of the
publication and its date appear, and notice is giventhat copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires afee and/or specific permission.
©1993 ACM -0-89791-601-8/93/008...$1.50

*Current address: SFB 288, MA 8-5, TechnischeUniversitat, Strasse des
17 Juni 136, 1 Berlin 12, Germany, gunn@sfb288.math.tu-berlin.de

1.1 Thecircleand theline

Whenwe evaluatethe expressionsin (2zz ) weareonly interestedin
¢ mod 1, sincesin isaperiodic function: sin(2rz) = sin(2x(z +
k)), where k is an integer. The set of al motions of the real line
R by integer amounts forms agroup I', which leavesinvariant the
function sin(2rz). We can form the quotient R/T", which is the set
of equivalence classeswith respect to this group. This quotient can
be represented by the closed interval [0, 1], with the understanding
that weidentify thetwo endpoints. But identifying thetwo endpoints
yieldsacircle. Oncewe know thevalues of sin(2xz) onthecircle,
we can computeit for any other value y, simply by subtracting or
adding integersto y until theresult liesin therange [0, 1).

Inthisexamplethe discretegroup I istheset of transformations
of R givenby al trandationsz — = + &k, wherek isaninteger. T
isdiscrete since no non-trivial sequencein I' convergesto the the
identity element. The quotient of R under thisactionis S?, the unit
circle. Wewrite R/I' = S*.
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Figure 1: Thecircleisthe quotient of R by the integers.

I =[0,1) isafundamental domain for this group action. We
canrecover R from the fundamental domain and I': the union
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covers R without overlap.
We moveinto two dimensionsto bring out other features of the
conceptsintroduced in this example.

1.2 Thetorusand the plane

Instead of R we now work with R2. Let T' be the group of trans-
lations of R? generated by (z,y) — (¢ 4+ 1,y) and (z,y) —
(z,y + 1), that is, unit trandations in the coordinate directions.
What is the quotient R?/T'? Instead of the unit interval with its
endpoints identified, we are led to a unit square that has its edges
identified in pairs. If we imagine the squareis made of rubber and
that we can perform the identifications by bending the square and
gluing, we find that the resulting surfaceisthetorus 72. SeeFigure
2.
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Figure 2: Making atorusfrom a square

1.3 Algebraand geometry: the fundamental group

A key element of this approach is the interplay of algebraic and
geometric viewpoints. To clarify this, weintroducethe fundamental
group of aspace, formed by taking all the closed pathsbased at some
point P in the space. We get a group structure on this set: we can
add pathsby following one and then the other, and subtract by going
around the second path in the reverse order. The zero-length path
is the identity element. If one path can be moved or deformed to
another path, the two paths correspond to the same group element.
It is easy to check that different P’syield isomorphic groups. We
say aspaceis simply connected if every closed path can be smoothly
shrunk to a point, like alasso, without |eaving the space. [Mun75]
The fundamental group of asimply connected space consistsof just
theidentity element.

In the above example R? is simply connected; while 72, the
quotient, isn't. When X is the quotient of a simply connected
space Y, we say that Y is the universal covering space of X.
Theimportance of simply connected spacesin the study of discrete
groupsis dueto abasic result of topology that (subject to technical
constraints which we will consider satisfied) every space has a
unique universal covering space [Mun75]. So in considering group
actions, we need only consider actionson simply connected spaces.

The interplay of algebraand geometry revealsitself in the fact
that the fundamental group of the quotient, a purely topological
object, isisomorphic to the group of symmetries I', which arisesin
apurely geometric context.

1.4 Insideversus Outside Views

In the caseswe will consider, the universal covering space X isa
geometric space, that is, it comes equipped with ametric that deter-
mines distance between points and angles between tangent vectors.
In this case we sometimes refer to X as a model geometry. This
metric allows us to compute geodesics, or shortest paths, between
pointsin the space[Car76]. The quotient spaceinherits thismetric.
R? isthe universal covering space of T2: if weunroll T2 onto R?,
thecopiesof thetoruswill cover the plane completely, without over-
lap. We say these copies tessellate the plane. For some purposes
therolled-up torus sitting in R® isuseful, but to gain the experience
of what it is like to live inside the surface, we are better served by
examiningthe tessellation of theuniversal covering spaceproduced
by the group.

For example, if wewant to make pictures of what an inhabitant

256

of T2 sees, we will make them in R?: Light follows geodesics,
which appear to be very complicated on the rolled-up torus, but
in R? are just ordinary straight lines. A complicated closed path
basedat P whichwrapsaround thetorusseveral times unrollsinthe
universal cover to be an ordinary straight line connecting P and i P
forsomeh € I'. SeeFigure3. Animmediate consequenceof thisis
that an observer onthetorusbasedat P seesmany copiesof himself,
onefor every closed geodesicon the surface passingthrough P. For
example, if helooksto theleft he seeshisright shoulder; if helooks
straight ahead he sees his back. See [Wee85] for a complete and
elementary description of this phenomenon. We say the rolled-up
torus represents the outsider’s view; while the unrolled view we
term the insider’s view, since it showswhat someoneliving inside
the spacewould see. Theimportance of theinsider’s view becomes
more telling in three dimensional spaces, since to “roll up” our
fundamental domains requires four or more dimensions. In this

casetheinsider’s view becomesa practical necessity.
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Figure 3: Outside and inside views of a complicated torus
path
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When wetry to perform the anal ogousconstruction for the two-
holed torus, instead of a square in the Euclidean plane R?, we are
led to aregular octagon in the hyperbolic plane H2[FRC92]. We
describe hyperbolic geometry in more detail below.

1.5 Definition of discrete group

A discretegroupisasubgroup I' of acontinuousgroup G such that
thereisaneighborhood U of theidentity in G withU N T" = 1, the
identity element.

In theexampleof thetorus above, thegroup T actson R2. Such
an action on atopological space X iscalled properlydiscontinuous
if for every closed and bounded subset K of X, thesetof v € T'
suchthat v K N K # ¢ isfinite. In the casesto be discussed here,
T isdiscreteif and only if the action of T isproperly discontinuous.

If in addition the quotient space X /T is compact, we say that T
isacrystallographic, or crystal, group.

The group of the torus discussed in 1.2 above is a crystallo-
graphic group, the simplest so-called wallpaper group. There are
exactly 17 wallpaper groups of the Euclidean plane. See [Gun83]
for afull discussion of this case and the details of a computer im-
plementation.

1.6 Dirichlet domains

Givenadiscretegroup, thereisatechniquefor constructingafunda-
mental domain, known as a Dirichlet domain. We defineit now for
future reference. Given adiscretegroup I' acting on a space X and
apoint P € X, theorbit O(P) of P under ' isUg cr9P. Thenthe
Dirichlet domain with respect to P isthe set of pointsin X which
are closer to P than to any other point of G(P). We can be more
precise. For each @ € O(P), construct the perpendicular bisector



Figure 4: (235), (236) and (237) triangle groupstessellate 52, k2, and H?2.

M of the segment PQ. Denoteby H ¢ the half-space containing P
bounded by M. Then the Dirichlet domain D' p determined by I'
and Pis

erO(p)HQ

In practice, for many of the groups the intersection can be assumed
to involve only finitely many H¢'s. The resulting polyhedron is
convex. If aface F is determined by ¢ € T, then ¢71F will
be a congruent face F' determined by ¢—1. This face pairing is
used in the sequel. Note that, since Dp depends upon P, there
are potentially many different shapesfor the Dirichlet domain for a
given group. [Bea83] Computational geometersmay recognizethat
a Dirichlet domain with respect to P is a Voronoi cell with respect
to the orbit of P.

2 Non-Euclidean Geometries

In the examples above, the model geometry was Euclidean. There
aretwo other simply connected two-dimensional spacesin addition
to R? which can serve as our model geometries: the sphere S2 and
the hyperbolic plane H2. They have geometries (to be described
in more detail below) which satisfy al the postulates of Euclidean
geometry except for the Parallel Postulate: Given aline I and a
point P noton L, thereisauniqueline M passingthrough P which
is parallel to I. The sphere has no parallel lines; while H? has
infinitely many for agiven L and P. See[Cox65] for an account of
the discovery and devel opment of these non-Euclidean geometries.

An equivalent characterization of Euclidean, spherical, and hy-
perbolic geometry is that the sum of the angles of a triangle is,
respectively, equal to, greater than, or less than, =. Figure 4
shows tessellations of these three spaces by triangles with angles
(v/2,7/3,7/n), wheren = (5,6, 7) yields spherical, Euclidean,
and hyperbolic space.

Wenow turnto demonstrating model sfor thesethree geometries
which share a common root in projective geometry. Thiswill lead
directly to techniques for visualizing discrete groups which act on
these spaces.

2.1 Projective geometry

Projective geometry is the geometry of lines without regard to dis-
tance or measure. It was discovered at roughly the same time as
the the non-Euclidean geometries discussed above; we show in the
sequel how it can be considered to be the fundamental geometry out
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of which the other geometriesarise. *

The projective plane P? is gotten from the ordinary plane by
adjoining a line at infinity. Projective space P™ can be constructed
inevery dimension » by adjoining an » — 1 dimensional hyperplane
at infinity. We assumethe reader is familiar with homogeneousco-
ordinatesfor projective space[Cox65]. Thegroup of self-mappings
of projective space P™ can then be represented via homogeneous
coordinates as elements of the matrix group PGL(R,n + 1), the
projectivegeneral linear group. Thisgroup consistsof al invertible
matrices of dimension (n + 1) x (rn + 1), where two matrices are
equivalentif oneis ascalar multiple of the other [Cox87]. Much of
the successof the approach described in this paper is dueto the cir-
cumstance that many computer graphics rendering transformation
pipelinessupport PG L( R, 4).

2.2 From projectiveto metric geometry

Projective geometry does not include a notion of distance or angle
measure. However, every projective transformation preserves a
quantity known asthe crossratio . The crossratio isa function of
four collinear points:

_A-0C)(B-D)
AMAB,CD) = B=O)\A=D)
Here the points are represented by a homogeneous coordinate sys-
tem on their common line; for convienience we can assumethisis
ordinary Euclidean measure on the line. This invariant has been
used by Cayley to construct metric geometries on the foundation of
projective geometry [Cay59].

First choose a homogeneous conic @ which isto beinvariant.
The conic is known as the Absolute for the associated geometry.
The projective transformations preserving ¢ form asubgroup H of
the full projective group. Two given points P, and P; determine
a line, which intersects the conic @ in a pair of points 7o and
T1, whose coordinates may be complex numbers. Then define a
distance function

d(Po, Pl) =K |Og )\(ToTl, PoPl) (l)
where the constant K is determined according to the nature of @
in order to make the distance function real. Sincethe crossratiois
amultiplicative function, use of the log function yields an additive
function. Measurement of anglesbetweenlines 7o and 71 proceeds

1See Appendix A.1



in like manner, by determining the two tangent linesto @ which lie
in the pencil of linesdetermined by 7o and ;.

This yields models for spherical, hyperbolic, and Euclidean
geometry which share the same straight lines, what is different
is how distance along them and between them is measured. The
subgroup H becomesthe isometry group for the metric geometry.

We will for simplicity’s sake work in two dimensions, that is,
with homogeneouscoordinates («, y, w), and consider only distance
measurement, not angle measurement. All our results generalize
directly to arbitrary higher dimension. Since the cases of spherical
and hyperbolic geometry are more straightforward, we begin with
them.

2.2.1 Spherical geometry

For the spherical case, we choose @ to be the totally imaginary
conic z° + y? + w? = 0. The proper choice for K isi/2. We
can derive from @@ an inner product between pairs of points: if
P (xo, Yo, ’wo) and P; (xl, Y1, wl) then Po. Py = zor1 +
yoy1 + wows. Then (1) reducesto:

Po. Py

(s P = rons ——Le

)

Thisisthefamiliar measurement between points on the unit sphere.
Projective transformations which preserve Q constitute the special
orthogonal group SO(3), thegroup of rotationsof three-dimensional
Euclidean space. Although it is tempting to consider the familiar
picture of S2 sitting isometrically in R, it is more appropriate to
think of the model presented purely in terms of P2. In this model,
to each point of P2 weassign two antipodal points of S2.

2.2.2 Hyperbolic geometry

For thehyperbolic case, we choose @ tobethetotally real conic z°+
y? — w? = 0, aconealigned with the w-axis. The correct choicefor
Kis % The derived inner product of two points Po = (zo, yo, wo)
and P = (xl,yl, wl) is then Po.P1 = xor1 + Yoyl — Wowsy,
sometimes called the Minkowski inner product. Our model for
hyperbolic geometry will consist of theinterior of this cone, where
P.P < 0. Then (1) reducesto:

Po. Py

d(Po, P1) = arccosh(—————
(Po.Po)(P1.P1)

where Py and P liein theinterior of the cone. Theisometry group

is SO(2,1), the so-called Minkowski group.

Consider the hyperboloid of two sheets H , defined by the con-
dition P.P = —1. Just asthe unit sphereis a model for spherical
geometry, the upper sheet of H isamodel for hyperbolic geometry.
The most convenient model for H? is hidden within H. Consider
the plane w = 1. It intersects @ in a circle that bounds a disk
D. We can project our hyperboloid H onto D from the origin.
This projection respects the distance function defined above (it is,
after all, aprojective invariant). Then D isamodel of hyperbolic
geometry, the so-called Klein or projective model. It is shown in
the right-most figure in Figure 4. In three dimensions, this yields
amodel of A3 asthe interior of the unit ball in R3. There are
severa other commonly used modelsof hyperbolic geometry, most
notably the Poincae or conformal model [Bea83]. Our choice of
the projective model here was determined by the fact that it yields
the correct results for visualizing the insider’s view.
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2.2.3 Euclidean geometry

Euclidean, or parabolic, geometry arises when apply a limiting
processtothe conic (24 y?) +w? = 0. Ase — 0, theexpression
for distance reducesto

d(Po, Pr) = \/(w0 — 21)2 + (yo — y1)?

where Py and P; have been dehomogenized. Theisometry group of
this geometry F(2) isthe semi-direct product of SO(2), thecircle,
and R(2), the two-dimensional Euclidean translation group.

2.3 Comments

This development in terms of projective geometry is given fully
in [Woo22] and is due to Cayley and Klein. For atreatment de-
rived from the moderndifferential geometric viewpoint see[Car76];
for an implementation description following this viewpoint see
[Gun92].

To justify the use of the names spherical and hyperbolic it is
worthwhile to verify that the geometries induced by the indicated
metrics on the indicated subspacesin fact yield geometries which
behave correctly with respect to parallel lines and sums of angles of
triangles.

For a detailed discussion of how to construct isometries of hy-
perbolic 3-spacein the projective model discussed here see[PG92].
2

The above results, stated for the two-dimensional case, can be
extended to arbitrary dimension.

3 Manifoldsand Discrete Groups

An n-dimensional manifold, or n-manifold, is a topological space
X suchthat X islocally homeomorphicto R™, that is, every point
of X hasaneighborhood that can be mapped 1-1 and continuously
onto a small ball in R"™. If in addition we can redlize X as the
quotient of a geometric space M by a discrete group, we say that
X hasa geometric structure modeled on M. A related concept to
that of manifold is orbifold. An orbifold islike a manifold, but it
may have singular points where it is locally homeomorphic not to
R™ but rather to the quotient of R™ by a finite group. Orbifolds
arise, generally speaking, when the elements of the discrete group
have fixed points, such asrotations or reflections.

Initial work on the connection of discrete groups and theory
of manifolds was done by Henri Poincae in the 1880's. To this
day much research in this field is driven by the Poincare Conjec-
ture, which asserts that a closed, connected, simply connected 3-
dimensional manifold ishomeomorphicto the 3-dimensional sphere
53, This conjectureis closely related to the classification problem:
making a list of al 3-manifolds. For example, in dimension 2,
there is a uniformization theorem which says that any closed 2-
dimensional manifold has a geometric structure modeled on one of
52, R?, or H2. Recentwork by Thurston and others has shown that
many (possibly all) 3-manifolds have essentially unique geometric
structures. That is, there are good reasonsto believe that to every
3-manifold there corresponds an essentially unique discrete group
[Thu82].

The geometric structures for 3-manifolds come from eight
model geometries: R3, S3, and H?® plus five additional simply
connected spaces. The additional five are not as nice as the first

2See Appendix A 2.



three, since they are not isotropic: not al directions in space are
the same. In any case, the most prevalent geometric structure is
hyperbolic. The current software implementation does not support
these five additional geometries.

In the discussion that follows, we will concentrate on the in-
sider’s, rather than the outsider’s, view of three dimensional orb-
ifolds. That is, we will look at the tessellations of the simply
connected space (Euclidean, hyperbolic, or spherical) induced by
discrete groups.

4  Softwarelmplementation

41 OOGL

In order to visualize the spaces under consideration, we have de-
veloped an implementation within an object-oriented graphics li-
brary, OOGL. The generic OOGL classis Geom Subclassesin-
clude include geometric primitives such as Pol yLi st, Vect,
Bezi er, and Mesh; and organizational objects such as Li st
and | nst (for instancing geometry). Methods with which Geons
come equippedinclude: Bound, Create, Copy, Delete,
Save, Load, Pick, and Draw.

An interactive viewer, Geonvi ew [MLPT], has been con-
structed based upon OOGL. It supportsviewing in the three geome-
tries discussed above: Euclidean, hyperbolic, and spherical. Thisis
possiblesince as noted aboveisometriesin the three geometries can
be expressedaselementsof PG L( R, 4). Theunderlying low-level
graphicslibraries (in the case of OOGL, GL or Renderman 2 ) sup-
port the use of elements of PG L(R, 4) for modeling and viewing
transformations. Thisisaresult of the fact that PG L( R, 4) isthe
smallest group which contains both the Euclidean isometries and
the perspective transformation. The visualization task is also made
easier by thefact that OOGL supports4-dimensional verticeswithin
all primitives. This provides a base for creating geometric models
in hyperbolic and spherical space using homogeneous coordinates.

4.2 Shading

We have established how it is possibleto implement non-Euclidean
isometries using standard projective transformations. We have not
addressed the question of correct lighting and shading of surfacesin
these spaces. Indeed, the standard shading algorithms (in contrast
to the standard transformations) are implicitly Euclidean. In or-
der to model the behavior of light correctly in these non-Euclidean
spaces, it is necessary to provide customized shaderswhich replace
the default ones. This has been successfully achieved within the
Renderman shading language [Ups89],[Gun92]. Figure 5 showsa
view inside hyperbolic space from the movie “Not Knot”. Interac-
tive software shadersfor OOGL for hyperbolic and spherical space
have also been written.

Thesecustom shadersusethe expressionsfor distanceandangle
described in 2.2 to replace the Euclidean ones. Additionally, the
decay of light intensity as a function of distance depends on the
formula for the surface area of a sphere in each space. That is,
the amount of light falling on an area element at distance d from
alight source will be inversely proportional to the total area of the
spherewith radius d. For example, in hyperbolic spacelight decays
exponentially: the area of asphereof radiusr isgivenby & sinh(r)

3GL is atrademark of Silicon Graphics, Inc.; and Renderman, of Pixar.
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Figure 5: A view of the tessellation of hyperbolic space
by regular right-angled dodecahedra, as in the movie “Not
Knot”. Thisimage was rendered using Renderman.

andsinh(r) = exp(r) for larger. Theshadersusedto createfigures
6 and 9 also involve aterm to model fog. *

5 TheDi screteG oup class

The Di scret eG oup class is a subclass of Geom The min-
imal data includes a set of generating isometries represented by
elements of PG L(R,4) and some geometric data, represented by
other OOGL objects. The Di scr et eG oup class supports the
standard methods listed above, and other methods of its own.

Because of the close connection to manifoldsoutlinedin Section
3, it can also be thought of asa Mani f ol d class. Many design
decisions were made to support visualization of the insider’s view
of amanifold. From this point of view, every element of the scene
description belongsto the manifold and hence should betessellated
by the group in the processof creating the insider’s view. We have
departed from this philosophy in one important respect: we do not
tessellate the lights contained in the scene description. To do so
would have sacrificed interactivity for a questionable increase in
authenticity.

Points of interest among Di scr et eGr oup methodsinclude:

5.1 Fileformat

Thereis an ascii file format for loading and saving discrete groups.
5 This format supports the three geometries described above, and
includes lists of generators and group elements and al so geometric
objectsfor display within the tessellation.

52 DiscreteG oupDraw

Each Di scr et eGr oup instanceincludesalist of group elements
and a collection of other Geons. Thegeneral algorithm transforms
each Geomby each group el ement and then drawsit. Therearesome
subtleties. Most of these groups are infinite, but we only compute
and store afinitelist of elementsat any time. One of the difficulties

4See Appendix A.3.
5See Appendix A 4.



Figure 6: A view inside the Euclidean orbifold from “Not
Knot” with the camera as a paper airplane.

of navigating in the tessellations produced by discrete groups is
that normal flight tends to wander to the edge of the computed
tessellation. To solve this problem, the Di scr et eGr oup object
isprovided with an automatic centering mechanism. It detectswhen
the camera |leaves the Dirichlet domain defined by the group, and
movesthe cameraby anisometry (determined by the face-pairings),
to stay within this central region. Note that since lighting is not
tessellated, lights must be defined within the camera coordinate
systemin order that lighting is invariant under this movement.

Another added featureisthat thereisaseparateassociated Geom
which represents the camera, or observer. Before being tessellated
it ismoved to the location of the camera, which as described above
is constrained to stay within the Dirichlet domain. The observer
then becomes aware of his own movement in the space. Thisis
an important feature especially for detecting the singular locus of
orbifolds. For example, when the camera approaches a axis of
symmetry of order » in an orbifold, this fact is made clear by the
approach of n — 1 other copies of the camera to the same axis, a
symmetry which the geometry of the Dirichlet domain alone may
not reveal.

53 DiscreteG oupEnun(int constraint() )

isamethod for enumerating lists of group elements given the gen-

erators. One such list isused by the draw routine: it defineswhich

copies of the fundamental domain to draw. The constraint func-

tion accepts a single group element and returns O or 1 according

to whether it satisfies its criteria. For example, a matrix may be
rejected if it moves the origin far, its determinant is small, or its
expression as aword in the generating elementsis long. This enu-

meration software usessoftware accel eration provided by the theory

of automatic groups [ECH™ 91], [Lev92] if an automatic structure
has been provided for the discrete group.
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Figure 7: A typical session of Mani vi ew showing some of
its panels but hiding Geonvi ew panels.

54 DiscreteG oupDirDom

createsafundamental domain using the Dirichlet domain algorithm
described above. This is useful for exploring groups for which
no other geometry has been provided. For display purposes, both a
wire-frame of thefull polyhedronand apossibly scaled versionwith
faces colored to reflect the face-pairing identities are drawn. See
Figure 9. The user can deduce features of the group by examining
the face-pairing patterns, or by moving the distinguished point P.

6 Exampleapplications

A variety of applications have been developed based on the
Di scr et eGr oup software class.

Mani vi ew is short for Manifold Viewer. In the paradigm
of object-oriented software tools, it is essentialy an Inspector for
the class Di scret eGroup . Mani vi ew communicates with
Geonvi ewviaatwo-way pipe. Geonvi ew readsthe description
of the discrete group output by Mani vi ew and displaysit. The
user typicaly loads a discrete group into Mani vi ew and then
manipulates the discrete group via a set of control panels. These
panels are grouped into: display settings, enumeration of group
elements, choiceof fundamental tile, and savingand loading various
elements. A typical snapshot of a Mani vi ew sessionis shownin
Figure7.

One of the milestones in the theory of discrete groups was
the enumeration of the 230 crystal groups in three dimensional
Euclidean space at the end of the nineteenth century. For a sur-
vey see [LM78],[Sch80]. eucsyns, an interactive application
which allows the exploration of these groups has been devel oped
by Olaf Holt at the Geometry Center, and adapted to use the
Di scret eGroup software. eucsyns is connected by a two-
way pipewith Mani vi ew Euclidean crystal groups canbewritten
as a semi-direct product of atranslation subgroup and afinite sub-
group of SO(3), a point group. The structure of eucsyns reflects



Figure 8: A snapshot of asession using eucsyns, an appli-
cation for exploring the 230 Euclidean crystal groups. This
figure shows an earlier version of eucsyms than that de-
scribed in the paper. See the paper version for an up-to-date
figure.

this decomposition. Choice of group proceedsby first choosingthe
|attice which the trandl ation subgroup leavesinvariant (one of seven
lattice types), then choosing the point group, finally choosing the
particular semi-direct product of the two. Figure 8 shows a view
inside the symmetry group r3.

We have also hooked up Mani vi ewto apowerful program for
computing hyperbolic structures on three dimensional manifolds,
shappea by Jeff Weeks [Wee]. This is a popular tool used by
research topologists to construct and examine three dimensiona
manifolds.

Geonvi ew, Mani vi ew, eucsyns, and snappea are al
available via anonymous ftp from geom.umn.edu [128.101.25.35].
Some of the computation of the groups and geometrical models
shown in the figures have been computed using a Mathematica
5 package developed at the Geometry Center, also available via
anonymousftp from the same site.

7 Example spaces

7.1 “Not Knot”

The mathematical animation “Not Knot” [GM91] pioneered the vi-
sualization of theinsider’s view of hyperbolic space. It featuresone
Euclidean orbifold (see Figure 6) and a series of hyperbolic orb-
ifolds converging to a hyperbolic manifold that is the complement
of the three linked circles known as the Borromean rings. Figure5
showsoneof theseorbifolds, whichtessellates A with right-angled
dodecahedra. One of the six generatorsis a rotation of 7 around

8Mathematicais a trademark of Wolfram Research, Inc
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Figure 9: A view of the 120-cell. We reduce the size of the
shaded polyhedrabut draw the original edges.

thelarge red axis. Asamatrix this generator is:

—1.618033 1.618033 0 —2.058171
—1.618033 O 0 —1.272019
0 0 1. 0

2.058171 —1.272019 0 2.618033

Note that all the non-zero entries are powers of the golden ratio.
Thisisan example of an arithmetic group and is of particular math-
ematical interest.

Thediscretegroupsunderlying “Not Knot” havebeen converted
into the Di scret eGroup format. Now, viewers interested in
exploring the spacesdepicted in “Not Knot” can do so.

7.2 The Poincare homology sphere

Possibly the most famous three dimensional spherical manifold is
the so-called Poincae homology sphere. It arises abstractly by
identifying the opposite faces of a regular dodecahedron with a
twist of 7/5. 7

The tessellation of $* corresponding to this manifold consists
of 120 regular dodecahedra, which meet 3 around each edge, and
is known as the 120-cell or dodecahedral honeycomb [Cox73]. In
contrast to theright-angled dodecahedronof hyperbolic space, these
dodecahedrahave dihedral anglesof 2.

An inside view of this manifold appears in Figure 9. Note
that the largest dodecahedron, which completely fills the view asif
it surrounds the viewer, is also the farthest away. Thisis atypical
feature of lifein spherical space; asobjectsmoveaway they decrease
in sizeuntil they reach amaximum distance of «/2, then they begin
toincreasein size until they reach the antipodal point of the viewer
at adistance of =, where they expandto fill completely the field of
view, since every geodesicleaving the observer also passesthrough
the antipodal point. Stereo viewing in spherical spacewould place
great strain on Euclidean trained eyes: when an object is exactly at
the equator, the lines of sight from an observer’'s eyes are pardlel;

"See Appendix A 5.



as an object moves beyond the equator, the observer must look
"anti-crosseyed” at it.

8 Directionsfor further work

Common ancestry in projective geometry means that some impor-
tant procedures can be shared with traditional Euclidean systems.
However, there remain a host of computer graphicsissuesrelated to
modeling and animation in non-Euclidean spaces to be addressed.
Many geometric constructions are very different. For example,
consider a equidistant curve, that is, the set of points equidistant
from aline. In the Euclidean plane an equidistant curve is a par-
alel line. But equidistant curvesin spherical and hyperbolic space
are not straight lines. What, then, is the proper generalization of
a cylinder in these spaces? Also, neither space allows similarity
transformations. changing the size of an object changesits shape!
Other questionsarise. What sort of harmonic analysisisavailableto
synthesizefractal terrains and textures in these spaces? If we hope
to do physically-based modeling in these spaces, we need to expand
our understanding of the laws of physics beyond the behavior of
light described above in relation to shading. Finally, the theory of
splinesin non-Euclidean spaceswas explored in [GK85].

In the area of topologica content, one obvious goal is to im-
plement the five non-isotropic three dimensional model geometries.
Also, there are many sorts of discrete groups, particularly those
that create fractal patterns, which do not fit neatly into the current
framework.

In the direction of mathematical research and user interface, the
efforts described here suggest various techniques for exploring 3-
manifolds. Connectingthis software with virtual reality technology
would allow the researcher to perform avariety of explorations of
the space. The use of sound also promisesto yield useful evidence.

Looking at the wider world of Riemannian geometry, thiswork
is one step in the direction of visualizing arbitrary curved spaces,
the Riemannian manifolds that figure centraly in relativity and
cosmology. For related work see [HD89].

Finaly, this work opens a new domain for artistic creativity,
threedimensional analoguesof M. C. Escher’sdramaticinterlocking
planar tessellations.

9 Conclusions

Approaching metric geometries via their common ancestry in pro-
jective geometry yields simple model swhich can bedirectly imple-
mented in existing rendering systems. The resulting systems allow
interactive navigation of curved spaces for the first time. Custom
shaders provide realistic rendering of the insider’s view. Methods
for manipulating and displaying discrete groups alow interactive
exploration of a wide class of topological manifolds modeled on
these spaces, that have never been visualized before. The resulting
system provides a unique tool for mathematicians, educators, and
scientists and artists whose work is related to spatial symmetry.
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A Appendicesfor CD-ROM

The following sectionswere del eted from the printed version of the
paper dueto spacelimitations that are not present in this CD-ROM
version.

A.1 Moreon projective geometry

Themain contributors to projective geometry include Poncel et, von
Staudt, Cayley, and Klein [Boy68].

Projective geometry is distinguished by a perfect duality be-
tween point and line; every two points determine aline; but equally
surely, every two lines determine a point, the point of intersection.
"Parallel" lines also intersect in a point, a point at infinity. Conse-
quently, every theorem hasadual versionin which point andlineare
reversed. Projective space P™ can be constructed in every dimen-
sion n by adjoining an » — 1 dimensional hyperplane at infinity.
After we adjoin these points, they have no specia status. A full
account can be found in [Cox65].

Coordinates in the projective plane arise from the choice of a
triangle of reference. Then every point can bewritten as aweighted
sum (zX + yY + wW) where X,Y,W are the vertices of the tri-
angle of reference, and its coordinates are the vector (z, y, w). By
definition, (Az, Ay, Aw) = (z,y, w) for any non-zero A. If the
triangle of referenceis chosento includethe Cartesian origin asone
vertex, the line at infinity as the opposite side, and the other two
sides are perpendicular to each other, we arrive at homogeneous
coordinates for the Euclidean plane, in which we can choose A so
that w = 1 except for points on the line at infinity. The resulting
(z, y) coordinates are the familiar Cartesian coordinates[Wo022].

A.2 Constructing |sometries

Note that it is possible to express the Absolute @ as a symmetric
matrix. For example, for the hyperbolic plane

10 0
Q=01 o0
00 -1

Then the Minkowski inner product Po.P1 = PoQ Py, where Pf is
the column vector form of Pi.

All isometries in these geometries may be constructed as prod-
uctsof reflections[Cox65]. We consider areflectionin ahyperplane
L in H™. This hyperplane determines a 1-dimensional orthogonal
subspace N (orthogonal with respect to the Minkowski inner prod-
uct!). After normalizing V, the reflection in L acting on apoint =
can be expressedas « — 2(z.N ) N. We can write this as a matrix,
' = s Awith A;; = I;; — 2N,Q,; N; where @ is the matrix form
of the Absolute. Similar expressionsapply for reflectionsin R™ and
S

A.3 Spherical space caveats

There are some detailsto the implementation of visualizationin $°
which deserve mention. They reflect the fact that each point of P™
correspondsto apair of antipodal pointson .S™. Thebehavior of the
rendering system in this situation depends on how the conversion
from homogeneous coordinatesinto 3D is done. In some systems,
points with w < 0 are negated to force w > 0, then clipping
is performed. This essentially collapses S° onto P3. The other
aternative is that the region w < O is treated separately from



w > 0; typically, clipping is done so that line segmentsare clipped
to lie within the latter region. Thisis preferable for visualizing S°.
The result isthat half the sphere, where w < 0, isinvisible at any
moment. This can be arranged to be the hemisphere that is behind
the camera. See [FVvDFH9(] for a discussion of homogeneous

clipping.

A.4 Sampledatafile

The following is a sample DiscreteG oup daa file
bor ron2. dgp, which describes the Euclidean orbifold shown
in Figure 6.

# Comments are delimited by "#'s.

DI SCGRP # Class ldentifier
(group borronR ) # Group name
(comment " Order 2 Borromean orbifold. # Arbitrary conmment

(attribute Euclidean )
(enundepth 4 )

(enundi st 10.0 )
(dim 3)

# { Euclidean | hyperbolic | spherical }

# Length of words in generators to compute
# No group element that noves origin > 10
# Dimensi on of the underlying space

(ngens 6 ) # Nunmber of generators

(gens # List of generators with synbolic nanmes

# The generators are 6 180 degree rotations around axes lying on centers

# of the sides of a cube of side-length 1.0.

# ais rotation around line parallel to z-axis, passing through (.5, 0, 0).

for d, through (-.5, 0, 0)

1001

# b rotates a line parallel to x-axis, through point (0, .5, 0)

o

00
-100
-10

0
101
ditto for e, through (0, -.5, 0)

o' o
Tl e
o o
“oro

[S)
roo

O H*OOORODHOOORDT
®

-1000

coo
cor
o
=
»_ o
)

coco: =
N
cor
)
o
PR o
[S)
Lo o

# distinguished point for Dirichlet domain conputation
(cpoint 0.000000 0.000000 0.000000 1.000000 )
# geonmetry to use to represent the canmera: a paper airplane

(cangeom
{ = OFF # see man 5 OOGL for this file format
525
000
0.100.5
0.1 00.5
0.1 0.5
00.10.5
3 012 200 200 0 .8
3 034 0 200 200 .8
}
) # end of DiscreteGroup format file

A5 Moreon the 120-cell

Each of its six generators moves a face of one dodecahedra so it
lines up with its opposite face; atypical generator looks like:

0.809017 0.5 0 0.309017
-05 0.809017  0.309017 O

0 —0.309017 0.809017 0.5
—0.309017 O -05 0.809017

Its first homology group is trivial, hence the name. (The first ho-
mology group is acommutative version of the fundamental group.)
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Originally Poincae had stated his famous conjecture in terms of
the first homology groups, and this manifold had provided the im-
portant counterexample which led to the revised conjectureinto its
current form.
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