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Abstract: We give a complete classification of all connected isometry groups, together
with their actions in the asymptotic region, in asymptotically flat, asymptotically vacuum
space—times with timelike ADM four-momentum.

1. Introduction

In any physical theory a privileged role is played by those solutions of the dynami-
cal equations which exhibit symmetry properties. For example, according to a current
paradigm, there should exist a large class of isolated gravitating systems which are
expected to settle down towards a stationary state, asymptotically in time, outside of
black hole regions. If that is the case, a classification of all such stationary states would
give exhaustive information about the large—time dynamical behavior of the solutions
under consideration. More generally, one would like to understand the global structure
of all appropriately regular space—times exhibiting symmetries. Now the local structure
of space—times with Killing vectors is essentially understood, the reader is referred to
the book [20], a significant part of which is devoted to that question. However, in that
reference, as well as in most works devoted to those problems, the global issues arising
in this context are not taken into account. In this paper we wish to address the ques-
tion, what is the structure of the connected component of the identity of the group of
isometries of space—times which are asymptotically flat in space—like directions, when
the condition of time—likeness of the ADM four—-momentpthis imposed? Recall that

the time—likeness qgf* can be established when the Einstein tensor satisfies a positivity
condition, and when the space—time contains an appropriately regular spacelike surface,
see [4] for a recent discussion and a list of references. Thus the condition of time—
likeness ofp* is a rather weak form of imposing global restrictions on the space-time
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under consideration. The reader should note that we do not reefliicebe positive,
so that our results also apply to space-times with negative mass, as long as the total
four—-momentum is time—like.

In asymptotically flat space—times one expects Killing vectors to “asymptotically
look like” their counterparts in Minkowski space—time — in [4, Proposition 2.1] we
have shown thaat the leading ordethis is indeed the case (see also Proposition 2.1
below). This allows one to classify the Killing vectors into “boosts”, “translations”, etc.,
according to their leading asymptotic behavior. There exists a large literature concerning
the case in which one of the Killing vectors is a time—like translatiengs the theory
of uniqueness of black holes — but no exhaustive analysis of what Killing vectors are
kinematically allowed has been done so far. This might be due to the fact that for Killing
vector fields with a rotation—type leading order behaviour, the next to leading order terms
are essential to analyse the structure of the orbits, and it seems difficult to control those
without some overly restrictive hypotheses on the asymptotic behaviour of the metric.
In this work we overcome this difficulty, and prove the following (the reader is referred
to Sect. 2 for the definition of a boost—type domain, and for a detailed presentation of
the asymptotic conditions used in this paper):

Theorem 1.1. Let (MM, g,.,) be a space—time containing an asymptotically flat boost—
type domairg2, with time—like (non—vanishing) ADM four momentutt with fall-off
exponentl/2 < « < 1 and differentiability indext > 3 (see Eq. (2.2) below). We
shall also assume that the hypersurfgee= 0} C Q2 can be Lorentz transformed to a
hypersurface irf2 which is asymptotically orthogonal 1@'. Suppose moreover that the
Einstein tensots,,, of g,,,, satisfies ire2 the fall-off condition

G =039, e>0. (1.1)

Let X* be a non-trivial Killing vector field orf2, let ¢,[ X] denote its (perhaps only
locally defined) flow. Replacing * by an appropriately chosen multiple thereof if nec-
essary, one has:

1. There exist$; > 0 such thatp;[ X](p) is defined for alp € X'g, = {(0,Z) € Q :
r(Z) > Ry} and for all s € [0, 1].

2. There exists a constamtc R such that, in local coordinates dp, for all z* = (0, Z)
as in point 1 we have

Py [X] =2 +ap + Ox(r™).
3. Ifa =0, theng,[ X](p) = p for all p for which¢,[ X](p) is defined.

The reader should notice that Theorem 1.1 excludes boost-type Killing vectors. This
feature is specific to asymptotic flathess at spatial infinity, see [6] for a large class of
vacuum space-times with boost symmetries which are asymptotically flat in light—like
directions. The theorem is sharp, in the sense that the result is not truésitillowed
to vanish or to be non-time-like.

When considering asymptotically flat space—times with more than one Killing vector,
it is customary to assume that there exists a linear combination of Killing vectors the
orbits of which are periodic (and has an axis — see below). However no justification
of this property of Killing orbits has been given so far, except perhaps in some special
situations. Theorem 1.1 allows us to show that this is necessarily the case. While this
property, appropriately understood, can be established without making the hypothesis of
completeness of the orbits of the Killing vector fields, the statements become somewhat
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awkward. For the sake of simplicity let us therefore assume that we have an action of a
connected non-trivial grou@o on (M, g,..) by isometries. Using Theorem 1.1 together
with the results of [4] we can classify all the groups and actions. Before doing that we
need to introduce some terminology. Consider a space—timg,(,) with a Killing

vector fieldX. Then (M, g,..) will be said to be:

1. Stationary if there exists an asymptotically Minkowskian coordinate sysfeh
on (perhaps a subset o), with 4° — a time coordinate, in whictk = 9/9y°.
When the orbits ofX are complete we shall require that they are diffeomorphic to
R, and that™'r = {¢t = 0,r(Z) > R} intersects the orbits ok only once, at least
for R large enough.

2. Axisymmetricif X* has complete periodic orbits. Moreo\Er* will be required to
have an axis, that is, the sgi : X*(p) = 0} # 0.

3. Stationary-rotatingicompare [14]), if the matrix® = lim,_,, 9, X* is a rotation
matrix, that iso# has a timelike eigenvectar*, with zero eigenvalue Let ¢[ X]
denote the flow ofX. We shall moreover require that there exigts> 0 such that
or[X]1(p) € I'(p) for p in the exterior asymptotically flat 3-regiQey:.

4. Stationary—axisymmetridf there exist onM two commutingKilling vector fields
Xq,a=1,2, such that{, g,.,,) is stationary with respect t&; and axisymmetric
with respect taX5,

5. Spherically symmetrjdf, in an appropriate coordinate system@nSO(3) acts on
M by rotations of the spheres= const,t = const in Q, at least fort = 0 andr
large enough.

6. Stationary—spherically symmetri€(M, ¢,..) is stationary and spherically symmet-
ric.

We have the following:

Theorem 1.2. Under the conditions of Theorem 1.1, & denote the connected com-
ponent of the group of all isometries @¥/, g,..,). If G is non—trivial, then one of the
following holds:

Go =R, and(1, g,,,) is either stationary, or stationary—rotating.
Go = U(1), and(M, g,.,,) is axisymmetric.

Go =R x U(1), and(M, g,.,,) is stationary—axisymmetric.

. Gop = 50(3), and(M, g,.,) is spherically symmetric.

. Go =R x SO(3), and(M, g,.,,) is stationary—spherically symmetric.

We believe that the condition th& be a boost-type domain is unnecessary. Recall,
however, that this condition is reasonable for vacuum space—times [9], and one expects
it to be reasonable for a large class of couplings of matter fields to gravitation, including
electro—vacuum space—times. We wish to point out that in our proof that condition is
needed to exclude boost—type Killing vectors, in Proposition 2.2 below, as well as to
exclude causality violations in the asymptotic region. We expect that it should be possible
to exclude the boost-type Killing vectors purely by an initial data analysis, using the
methods of [4]. If that turns out to be the case, the only “largeness requirements” left
on (M, g,,,) would be the much weaker conditiGnseeded in Proposition 2.3 below.

aawe

11f o¥ has a timelike eigenvectar*, we can find a Lorentz frame so that = (a, 0,0, 0). In that frame
ol satisfiessd = o/ = 0, so that it generates space-rotations, if non—vanishing.

2 Those global considerations of the proof of Theorem 1.2 which use the structizecah be carried
through under the condition (2.15), provided that the const@hntand C; appearing there are replaced by
some appropriate larger constants. The reader should also note that these considerations are unnecessary when
X g is assumed to be achronal.
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Let us also mention that in stationary space—times with more than one Killing vector
all the results below can be proved directly by an analysis of initial data sets, so that no
“largeness” conditions on\{, ¢,.,,) need to be imposed — see [3].

Let us finally mention that the results here settle in the positive Conjecture 3.2 of
[13], when the supplementary hypothesis of existence of at least two Killing vectors is
made there.

We find it likely that there exist no electro—vacuum, asymptotically flat space—times
which have no black hole region, which are stationary—rotating and for viljchR. A
similar statement should be true for domains of outer communications of regular black
hole space—times. It would be of interest to prove this result. Let us also point out that the
Jacobi ellipsoids [7] provide a Newtonian example of solutions with a one dimensional
group of symmetries with a “stationary—rotating” behavior.

2. Definitions, Proofs

Let W be a vector field, throughout we shall use the notatigfi¥’] to denote the
(perhaps defined only locally) flow generatediby
Consider a subsé&? of R* of the form

Q={(t7 e RxR*:r((t,7)) > R, [t| < f(r (@)}, (2.1)

for some constank > 0 and some functiotf(r) > 0O, f # 0. We shall consider only
non—decreasinfunctionsf. Here and elsewhere, by a slight abuse of notation, we write

3
r((t,2) = r@) = | > _@)?.
i=1

Let « be a positive constan® will be calleda boost-type domaiif f(r) = 0r + C for
some constant > 0 andC' € R (cf. also [9]).

Let ¢ be a function defined oR. For 5 € R we shall say thaty = O (r?) if
¢ € C*(R), and if there exists a functiofi(t) such that we have

<CM@A+r)’.

We write O(r”) for Og(r?). We say thaty = o(r?) if im ,_ o t=constr P ¢(t, r) = 0. A
metric onQ2 will be said to be asymptotically flat if there exist> 0 andk € N such
that

0<i<k |0n 0o

Guv — NMuv = Ok(T_a) ’ (22)
and if there exists a functiofi(t) such that
lgu| + 19" < C(0), (2.3)
goo < —CH)~*, ¢ <-CH)T, (2.4)
VXTeR? g, XX >C@)IY (X2, (2.5)

Here and throughouy,,, is the Minkowski metric.

Given a sef2 of the form (2.1) with a metric satisfying (2.2)—(2.5), to every slice
{t = cons} C Q one can associate in a unique way the ADM four—momentum vector
p* (see [10, 2]), provided that > 1, « > 1/2, and that the Einstein tensor satisfies the
fall-off condition (1.1). Those conditions also guarantee tiatvill not depend upon
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which hypersurface = const has been chosen. The ADM four-momentur afill
be defined as the four-momentum of any of the hypersuffaseconst C .
We note the following useful result:

Proposition 2.1. Consider a metrigy,,, defined on a se® as in (2.1) (with a non—
decreasing functiory), and suppose thag,, satisfies (2.2)—(2.5) witlt > 2 and

0 < a < 1. Let X* be a Killing vector field defined of2. Then there exist numbers
O = o Such that

Xt —ot,z" = O, (2.6)
with o#, = n*“04,. If 0, = 0, then there exist numbers* such that
XH — AP = Op(r™®) . (2.7
If 5, = A* =0, thenX* = 0.

Proof. The result follows from Proposition 2.1 of [4], applied to the sli¢es const,

except for the estimates on those partial derivativeX ah which 9/9t factors oc-

cur. Those estimates can be obtained from the estimates for the space—derivatives of
Proposition 2.1 of [4] and from the equations

VMVVXQ = RAHVO(X)\ ) (28)
which are a well known consequence of the Killing equations. (J

The proofs of Theorems 1.1 and 1.2 require several steps. Let us start by showing that
boost-type Killing vectors are possible only if the ADM four-momentum is spacelike
or vanishes:

Proposition 2.2. Let g,,,, be a twice differentiable metric on a boost-type dom@ijn
satisfying (2.2)—(2.5), withx > 1/2 and withk > 2. Suppose that the Einstein tensor
G, of g, satisfies

Gl“’ = O(T—3—E)’ e>0.

Let X* be a Killing vector field or2, set

(2.9)

(those limits exist by Proposition 2.1). Then the ADM four-momepttaf Q2 satisfies
o, /p*=0. (2.10)

Proof. If o#, = 0 there is nothing to prove, suppose thus that # 0. LetQ*, be a
solution of the equation

aQt

— 2 =0M,Q%, .

ds Thadt v

It follows from Proposition 2.1 that the flow;[ X](p) is defined for allt € [—«;, o]
and for allp € X, = {t = 0,7(p) > R1} C Q for some constants and R;. By [11,
Theorem 1], in local coordinates we have

FIXT= @, ()27 + On(rt ™)

78%2[3(] = Q) + Op_1(rt=) .
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The error terms above satisfy appropriate decay conditions so that the ADM four—
momentum

Pu(@ [ XI(XR,)) = U’ dSas
XU(Zr,)

is finite and well-defined. HeréS,,, = 1y, t,da® A ... A da®, 1x denotes the inner
product of a vectoX with a form, and ¢f., e.g, [11])

U = 8865570 1,50,9"7 .

As is well known (see [11] for a proof under the current asymptotic conditicinalso
[5, 1]), under boosts the ADM four-momentum transforms like a four—vector, that is,

P (@ X)(XR)) = Q" (0)p" (X)) - (2.11)

On the other hand, thg!'[ X]'s are isometries, so that

a B
o TXU) A () 20 4y <y,
which gives
UL GHTXIERT (090 = (U @) + 02 . (212)

Equations (2.11) and (2.12) give, for &ll

Q7 (s = pu (2.13)
and (2.10) follows by—differentiation of Eq. (2.13). O

Suppose, now, that the ADM four—-momentyst of the hypersurfacét = 0} is
timelike. If Q2 is large enough we can find a boost transformatiosuch that the hyper-
surfaceA({t = 0}) is asymptotically orthogonal tp*. It then follows by Proposition
2.2 that the matrix defined in Eq. (2.9) has vanishing 0-components in that Lorentz
frame, and therefore generates space rotations. We need to understand the structure of
orbits of such Killing vectors. This is analysed in the proposition that follows:

Proposition 2.3. Letg,,, be a metric on a se2 as in Eq. (2.1), and suppose that,
satisfies the fall-off condition (2.2) with < o« < 1andk > 2. Let X* be a Killing
vector field defined of2, and suppose that

719, = X109, — w2l 0; = o(r) 0, 7" = 0(1), (2.14)

with w?; — a (non-trivial) antisymmetric matrix with constant coefficients, normalized
such that’ ;w?; = —2(2r)2. (It follows from Proposition 2.1 that there exist constants
C1, Cy such that X0 < Cyrt=> + ¢y on {t = 0} C Q.) Suppose that the functighin
(2.1) satisfies

fr) > Cort™ + (4, (2.15)

where( is any constant larger tha@;. Let¢, denote the flow ok'*. Then:

1. There exist®?; > R such thaty,(p) is well defined fop € Yz, = {t = 0,7 >
Ri1} C Qand fors € [0, 1]. For those values of we havep;(X'g,) C Q.
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2. There exist constan#%” such that, in local coordinates d, for all z# € X', we
have
Oy =t + AP+ Op_1(r™?) . (2.16)

3. If A¥ =0, theng1(p) = p for all p for which¢,(p) is defined.

Remark. The hypothesis that lim. .. 9; X° = 0, which is made in (2.14), is not needed
for points 2 and 3 above to hold, provided one assumes that the conclusions of point 1
hold.

Proof. Point 1 follows immediately from the asymptotic estimates of Proposition 2.1
and the defining equations fot!,

dos
ds

To prove point 2, let??;(s) be the solution of the equation

= XH oot

dR'; _
ds

with initial condition R?;(0) = &°;, setR%(s) = 1, R%(s) = 0. We have the variation—
of—constants formula

wszkj ,

P (x) = R, (s)a” + /O CRE(s — 027 (@)t

from which we obtain, in view of Proposition 2.1,

g’ff — "y = Op—a(r™?), (2.17)
oL — ot = Oy ). (2.18)
Sety*(x) = ¢/ (x). Asy*(z") is an isometry, we have the equations
0%y oy~ oyP oy
=I7, @)+ - T3 o . 2.1
oxHOx? IJ«V(J;) or° ﬁ'y(y(m)) Ok Oz ( 9)
From (2.17)—(2.18) we obtain
62 a _ g Con
% =I5, (@) = T8, (@) + O 1(r772)

1
(v"(z) — 2") /O 9, (tw + (1 — t)y(x))dt + Op_1(r~2*)

Op_o(r 1722y (2.20)

We can integrate this inequality into obtain

a(ya — xa) _ —2«
T oun Op—1(r—7) .

If 2a > 1, the Lemma the Appendix A of [11] shows that the limits Jlimy ;=o(y* —
x®) = A~ exist and we get

ya — %= A%+ Ok(rl—Za) .
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Otherwise, decreasing slightly if necessary, we may assume that 2 1, in which
case we simply obtain
ya e Ok(?"liza) )

If the last case occurs we can repeat this argurfiertt times to obtair(r—1~¢*D) at

the right—hand-side of (2.20) untll — (/+1)a < —2; atthe last iteration we shall thus
obtainO(r—2~¢) there, with some > 0. We can again use the Lemma of the Appendix
A of [11] to conclude that the limits ligL, o 1=o(y® — %) = A* exist. An iterative
argument similar to the one above applied to (2.20) gives then

€0 =y — 2% — A% = Oh(r—), (2.21)

which establishes point 2.
Suppose finally thati* vanishes. Equation (2.19) implies an inequality of the form

oy ~ %)

= - - .
Serdmr | = CUOTlly — [ +[T|oy — z))), (2.22)

for some constan€’. A standard bootstrap argument using (2.22), (2.17) and (2.18)
shows that for alb > 0 we have

lim [r7|y — x| + r7|0(y — x)|] = 0. (2.23)

Define
F=rP2ly — a2 +rP|0(y — 2)%. (2.24)

Choosings large enough one finds from (2.22) that

or >0. (2.25)
or
This implies
Ry <r<ri= F(r)>F(r)>0. (2.26)

Passing withr; — oo from (2.23) we obtai,(z) = = for x € Xg,. ¢1 is therefore an
isometry which reduces to an identity on a spacelike hypersurface, and point 3 follows
from[12, Lemma2.1.1]. O

We are ready now to pass to the proof of Theorem 1.1:

Proof of Theorem 1.1Let y®(z?) be defined as in the proof of Proposition 2.3, as it is
an isometry we have the equation:

9" oy
Oz OxP
Seté, = n.5E°%, wheren,s = diag(-1,1,1,1), with ¢ defined by eq. (2.21). Equa-
tions (2.21) and (2.27) together with the asymptotic form of the metric, Eq. (2.2), give

%o | O,
ozxf Oz«

G (y()) = gap(®) - (2.27)

Jap(a” + A7 +E7) = gap(27) = Opa(r727) . (2.28)

Suppose first thatl” = 0; we have
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gaﬁ(xg +A% + EJ) - gaﬁ(xg)

1
=Gt U)Ap+/o (aag;f(f“+s(A"+£”))(AP+§p)) Xot ”)AP>

agozﬁ( 7Y AP +O(T‘_1 Za)
A similar calculation for the derivatives gf,s gives
a [e} o (o}
gap(@” + A7 +€7) = gap(e7) = FL@NAT+ O o) (229)

In a neighbourhood of';, define a vector field* by
YH = ¢+ AN
It follows from (2.28)—(2.29) that# satisfies the equation
V.Y, +V,Y, = Op_a(r 172

By hypothesis we havé > 3 and 2v > 1, we can thus use [4, Proposition 3.1] to
conclude thatd# must be proportional tp*. The remaining claims follow directly by
Proposition2.3. 0O

To prove Theorem 1.2 we shall need two auxiliary results:

Proposition 2.4. Under the hypotheses of Prop. 2.1, I&ét be a non-trivial Killing
vector field defined of. Suppose that there exigis such that forp € X'g, the orbits
¢s[W](p) are defined fors € [0, 1], with p1[W](p) = p. Assume moreover that there
exists a non—vanishing antisymmetric matrix with constant coefficightsuch that
WH9,, — w';270; = o(r). Then the sefp : W (p) = 0} is not empty.

Remark.The following half-converse to Proposition 2.4 is well known: Let W be a
Killing vector field on a Lorentzian manifold/ and suppose that’(p) = 0. If there
exists a neighborhoo@ of p such thatV is nowhere time-like o, then there exists

T > 0 such that all orbits which are defined for T are periodic.

Proof. Let ¢, denote the flow of/ on €, and forp € Y5, define

_ 1
t(p) / t o ¢s(p)ds, (2.30)

0

1
r(p) /0 7 0 ¢,(p)ds. (2.31)

Note that ¢,), asymptotes to the matri®“,, (s) defined in the proof of Prop. 2.3, which
gives

1
Vi= / (6),(V1) 0 ¢u(p)ds = Vi + O(r).
0
Similarly VE~ VE+ O(—)
t=Vt+O(r ).

This shows that folR large enough the selSg+ = {p : 7(p) = R, t(p) = T} are
differentiable spheres. Moreover
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Fogs=T, togs=t, (2.32)

so thatW is tangent toSr . As every continuous vector field tangent to a two—
dimensional sphere has fixed points, the result follows. [

Proof of Theorem 1.2.et g denote the Lie algebra @f,. As is well known [19, Vol. I,
Chapitre VI, Theorem 3.4], to any eleménbf g there is associated a unique Killing
vector fieldX*(h), the orbit of which is complete.

Suppose first thag is 1-dimensional. If the constantof Theorem 1.1 vanishes,
(M, g,,,) is axisymmetric by part 3 of Theorem 1.1 and by Proposition 2.4.dbes
not vanish there are two cases to analyse. Consider first the case inaytlich/4 0
asr — oo. Let us perform a Lorentz transformation so that the new hypersurfads
still denoted byX'r, is asymptotically normal tp*. By Proposition 2.2 we must have
liM, oo 9;X° = lim, o 9 X* = 0, hence Proposition 2.3 applies. A contains a
boost-type domain for arflff we can choose € X'g,, with r(p) large enough, so that
¢s[X](p) is defined for alls € [0, T], with ¢;[X](p) 7 p by (2.16). This shows that
Gy cannot bel/(1), henceGy = R, and (M, g,..) is stationary—rotating as claimed.
The second case to consider is, by Proposition 2.1, that in wkith— ap* = A
asr — oo in Q. We want to show that'y is a global cross—section fafr,[ X], at
least forR large enough. To do that, note that timelikenessgibfimplies that we can
chooseR; large enough so that# is transverse ty,. Let (g;5, K;;) be the induced
metric and the extrinsic curvature &fz,, and let M, g,.v) be the Killing development
of (X'r,, gi5, Ki;) constructed using the Killing vector field#, see Sect. 2 of [4] for
details. Definel : M — Mg, = Uer e[ X](XR,) by ¥(t, Z) = ¢:[X]1(0, Z). Thenw
is alocal isometry betweell andMg,. W is surjective by construction, and there exists
a boost—type domaif® in M such thaty & is a diffeomorphism betweef2 andQ.

Suppose tha? is not injective, let us first show that this is equivalent to the statement
that W—1(Z,) is not connected. Indeed, lpt= (¢, %) andq = (r,%) be such that
W(p) = ¥(q), thengp_;(¥(p)) = ¢_+(¥(q)) so that¥((0, ¥)) = W¥((r —t, %)), which leads
to (r —t,79) € ¥ H(Zr,).

Consider any connected componéfhbf U~1(Xg,), asW is a local isometr@ is
an asymptotically flat hypersurfacej\ﬁf. By [11, Lemma 1 and Theorem 1], we have

Y={t=h@, FTeUecR%},

wherel/ containsR®\ B(Rs) for someRs; > R,. Morever there exists a Lorentz matrix
A", such that

(@) = A% X+ 0@t ).
Note that the unit normal t& approaches, as— oo, the Killing vector X, hence
A XY= XM = A% =A%=0.

It follows that h(¥) = O(r1~?), so thatW((h(¥), 1)) € Q for »(Z) > R4 for some
constantRs > Ra.

Consider a poing € X'z, then there exists a point,(©) such that¥(0, 7) = ¢ and
apoint (u(y), ) € X such thaw(h(y), 7)) = q. This, however, contradicts that fact that
V|4 is a diffeomorphism between the boost-type dom@iand 2. We conclude that
1 is injective. It follows thaty is a bijection, which implies that all the orbits through
p € X'g, are diffeomorphic tdr, and that they intersectr, only once.
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Suppose next that is two—dimensional. Then there exist a#h two linearly inde-
pendent Killing vectorsX¥, a = 1,2. Propositions 2.2 and 2.3 lead to the following
three possibilites:

i) There exist constant8#, a = 1, 2 such thafX* — B# = o(1). By [4, Prop. 3.1] we
haveB! = a,p" for some constants,. It follows that there exist constants,(5) 7 (0, 0)
such thatn X! + 5X} = o(1). Proposition 2.1 implies thatX}" + 53X} = 0, which
contradicts the hypothesis dign= 2, therefore this case cannot occur. ii) There exist
constants3* andw’; = —w’; such that

XI' — B* =0(1), X10, —w'z'o; = o(r). (2.33)

Consider the commutatoX];, X,]. The estimates on the derivatives & of Propo-

sition 2.1 give X1, X5]° = o(1), [X1, X2]’ = o(r), so that by Prop. 2.1 the commu-
tator [X1, X>] either vanishes, or asymptotes a constant vector with vanishing time—
component, hence spacelike. The latter case cannot occur in view of [4, Prop. 3.1],
hence X1, X,] = 0. It follows thate:[ X, + aX1] = ¢:[X2] o ¢:[aX1]. Let ap* be the
vector given by Theorem 1.1 for the vector fietd'. In local coordinates we obtain

Xo+aXi]=a! +ap” +aB* +O(r™ ).

By [4, Prop. 3.1] we havé3* ~ p#, so that we can chooseso thatg] [ X, + aX;] =
M +O(r~®). By point 3 of Theorem 1.1 we obtaiii [ X, +aX;](p) = p, hence all orbits
of X} + aX{" are periodic with period 1. Ag# is time—like, the orbits ofX}" must be
time—like in the asymptotic region. As before, those orbits cannot be periodic because
the coordinates of cover a boost—type region, hence they must be diffeomorphic to
R. As [ X1, X;] = 0, we obtain that7, is the direct produdR x U(1).

iii) For dimg = 2 the last case left to consider is that when there exist non—zero
constants);, a = 1,2, such thaKgau—nga:iaj = o(r). Suppose that the antisymmetric

matricesw;; do not commute, then by well known propertiessa{3) the matrices

wy; together with the matriw};w5, — w?w}, are linearly independent. It follows that
[X1, X7] is a Killing vector linearly independent oX; and X, near infinity, whence
everywhere i2. Itis well known that the orbits off 1, X,] are complete when those of
X7 and X, are [19, Vol. |, Chapitre VI, Theorem 3.4], which implies thi@j is at least
three—dimensional, which contradicts dire 2. If the matricesof; commute they are
linearly dependent. Thus there exist constants3} 7 (0,0) such that X} + S X} =
o(r). By Proposition 2.1 the Killing vector field X' + X' is a translational Killing
vector, and the case here is reduced to point ii) above.

Let us turn now to the case of a three dimensional Lie alggbta analysis similar
to the above shows that this can only be the case if three Killing vector fi€fts
i = 1,2,3, onM can be chosen so that!'0, — eijkxjak = o(r). Moreover we must
have [X;, X,] = € Xx. Theng is the Lie algebra o60O(3), so thaiGo = SO(3), or its
covering groupSpin(3) = .SU(2) [18, p. 117, Problem 7]. Integrating over the group as
in the proof of Proposition 2.4 (the integrﬂ in Egs. (2.30) —(2.31) should be replaced
by an integral over the grou@, with respect to the Haar measure) one can pass to a
new coordinate system, defined perhaps only on a subset sfich that the spheres
t = const,r = const are invariant undefy. Go must beSO(3), asSO(3) is® the largest
group acting effectively oi$?. The proof of point 5) is left to the reader. O

3 This can be seen as follows: Any isometry is uniquely determined by its action at one point of the tangent
bundle. SinceSO(3) acts transitively ofl"S2, no larger groups can act effectively there.
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3. Concluding Remarks

Theorem 1.1 leaves open the intriguing possibility of a space—time whicbriyasne
Killing vector which, roughly speaking, behaves as a spacelike rotation accompanied by
a time-like translation. We conjecture that this is not possible when the Einstein tensor
G, falls—off at a sufficiently fast rate, when global regularity conditions are imposed
and when positivity conditions off,,,, are imposed.

One would like to go beyond the classification of groups given here, and consider the
whole group of isometrie&, not only the connected component of the identity thereof
Go. Recall,e.g, that a discrete group of conformal isometries acts on the critical space—
times which arise in the context of the Choptuik effect [8, 17]. Let us first consider the
case of time—periodic space-times. Clearly such space—times exist when no field equa-
tions or energy inequalities hold, so that the classification question becomes interesting
only when some field equations or energy—inequalities are imposed. In the vacuum case
some stationarity results have been obtained for spatially compact space—times by Gal-
loway [15]. In the asymptotically flat context non—existence of periodic non—stationary
vacuum solutions with an analytic Scri has been established by Papapetraaf.[2i$h
Gibbons and Stewart [16]. The hypothesis of analyticity of Scri is, however, difficult
to justify; moreover the example of boost—rotation symmetric space—times shows that
the condition of asymptotic flatness in light—like directions might lead to essentially
different behaviour, as compared to that which arises in the context of asymptotic flat-
ness in space-like directions. One expects that non—stationary time—periodic vacuum
space-times do not exist, but no satisfactory analysis of that possibility seems to have
been done so far.

Another set of discrete isometries that might arise is that of discrete subgroups of the
rotation group, time—reflections, space—reflections, etc. In those@dé&ss compact.

Itis easy to construct initial datg,, K;;) on a compact or asymptotically flat manifold

X’ which are invariant under a discrete isometry group, in such a way that the group
of all isometries ofg;; which preservek;; is not connected. By [12, Theorem 2.1.4]
the groupH will act by isometries on the maximal globally hyperbolic development
(M, gu) of (X, 955, K;5), and it is rather clear that in generic such situations the groups
G of all isometries of {/, g,,..) will coincide with H. In this way one obtains space—
times in whichG/Gy is compact. It is tempting to conjecture that for, say vacuum,
globally hyperbolic space—times with a compact or asymptotically flat, appropriately
regular, Cauchy surface, the quotigrf G, will be a finite set. The proof of such a
result would imply non—existence of non—stationary time—periodic space—times, in this
class of space-times.
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