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Particles in a stationary spherically symmetric gravitational 
field? 
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Main, Robert-Mayer-Strasse 8-10, 6 Frankfurt/Main 1, Germany 
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Abstract. Dirac’s equation has been considered in a Schwarzschild (Reissner-Nordstrgm) 
background. Resonances in a continuum of states are found, similar to the Klein-Gordon 
case. Also the solutions of the Dirac and Klein-Gordon equations are investigated for an 
extended gravitating source. Special attention has been given to the case in which the radius 
of the source tends towards its Schwarzschild radius. A limiting charge-to-mass ratio for 
black holes is obtained. 

1. Introduction 

One of the curiosities of Einstein’s theory of gravitation is the appearance of event 
horizons and singularities. An horizon is characterized by a region in space-time, from 
which it is impossible to escape to infinity. The boundary of this region is given by a 
wavefront (null hypersurface) which just cannot escape to infinity. This event horizon 
generates a strong limitation on the causal relationships between different parts of 
space-time. 

Singularities are positions in a space-time manifold at which the normal picture of 
space and time breaks down, caused e.g. by an infinite Riemannian curvature. It has 
been shown in a number of theorems that under very general conditions singularities 
and horizons appear in Einstein’s theory (Misner et a1 1973). This could possibly be 
used as an argument against Einstein’s Lagrangian among competitive theories. On the 
other hand the x-ray source X1 in Cygnus may be, according to experimental data, a 
black hole (De Witt and De Witt 1972). Furthermore, a number of experiments 
performed just recently have proved many of Einstein’s predictions up to an accuracy of 
about 3%. 

So one is led to the question, whether the inclusion of matter fields and/or the 
dynamical treatment of the gravitational collapse by use of Einstein’s Lagrangian leads 
to manifolds free from pathologies. To investigate this, we shall couple matter as a first 
quantized field to the (classical) gravitational field. This is an approximation, since the 
gravitational field is not quantized. It is expected, however, that this approximation is 

f This work was supported by the Bundesministerium fur Forschung und Technologie. 
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good enough to study global gravitational effects such as e.g. the macroscopic change of 
singularities like the classical Schwarzschild radius, under the influence of other fields, 
e.g. electron-positron, pion, nucleon-antinucleon fields. Therefore our programme 
can be characterized as an attempt to investigate the interaction of a geometry with a 
quantized matter field. The phenomenon guiding us in our research is the well known 
example of the supercritical electric fields (2 = 137 problem) which can be generated by 
superheavy nuclei and molecules (Pieper and Greiner 1969, Muller et a1 1972). It has 
been shown for this case, that the normal neutral electron-positron vacuum breaks 
down for over-critical charges leading to a new stable charged vacuum?. The latter 
contains finite, quantized amounts of charge shielding, to some extent, the original 
central charge (Rafelski et a1 1974). The charge of the vacuum is generated by the 
creation of e + e -  pairs for which the electrons are bound. This is due to the charge 
asymmetry of the central Coulomb interaction. The question we would like to answer is 
whether similar effects happen in superstrong gravitational fields, which are-in 
contrast to the electromagnetic case-charge symmetric as long as there is no charge on 
the central mass. 

Particle creation in non-static geometries (an expanding or collapsing universe for 
example) and in strong gravitational fields appearing in the vicinity of a black hole, has 
already been discussed. Among these works, Hawking’s theory (Hawking 1974, 1975) 
of a ‘thermal emission’, in which he studies the influence of the time-dependent metric 
during a gravitational collapse upon a scalar field, is probably best known. 

Ruffini and co-workers (Deruelle and Ruffini 1974, Damour et a1 1976) found that 
pair creation in the region surrounding a Kerr-Newman black hole was possible, based 
on a static background geometry, in contrast to Hawking’s theory. Pair creation occurs 
here as an example of ‘Klein’s paradox’, in analogy to the previously mentioned 
situation of superstrong fields in quantum electrodynamics (QED) that have been 
discussed by Muller, Rafelski and Greiner during the last eight years (Pieper and 
Greiner 1969, Muller er a1 1972, Rafelski et a1 1974). 

For the Klein-Gordon equation in a Kerr-Newman geometry Ruffini found a 
continuum of states with resonances in the energy region from +mc2 to -mc2.  Based 
on classical arguments, those resonances were interpreted as quasi-bound states, which 
decay with finite probability towards the singularity, the probability of decay being 
given by the width of the resonance. Again we have a close analogy with the results of 
over-critical Coulomb fields where bound states have entered the negative energy 
continuum of the Dirac equation yielding quasi-bound resonance configurations. The 
width of those is a measure for the decay of the vacuum state. 

However, it is not clear what the connection is between this continuum and the 
discrete energy levels of a scalar or bispinor field, which one would expect in the case of 
a weak gravitational field (without an event horizon). Therefore in the present work, we 
study the Dirac and Klein-Gordon equations in the field of an extended gravitating 
source (liquid drop) and investigate the structure of the energy spectrum for the source 
radius tending towards the Schwarzschild radius. 

Furthermore, we present the solutions of Dirac’s equation in a Schwarzschild and 
Reissner-Nordstrdm background and discuss the appearance of resonances in a 
‘pseudo’-continuum, as in the Klein-Gordon case. One of the interesting results will be 
the appearance of a limiting charge-to-mass density (charge-to-mass ratio) for black 
holes (see also Gibbons 1975). 

t Foireviews on the charged vacuum in over-critical fields see Muller (1976) and Greiner and Scheid (1976). 
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2. The Dirac equation in a static, spherically symmetric gravitational field 

We consider Dirac’s equation in a Schwarzschild (Reissner-Nordstrdm) field or more 
generally, in a static, spherically symmetric gravitational field (Brill and Wheeler 1957) 

g,, = diag(e*, r2, r2  sin2 e, -ev) 
where 

(Schwarzschild) (2) 
2MG 

r 
e” = e-’ = 1 -- 

or 

(Reissner-Nordstrdm). (3) 
e”  = e-A = 1 --+.-=fp ~ M G  Q& 

r r  

In equations (2) and (3) we have introduced the mass and charge of the black hole, MG 
and Q G  respectively, in terms of ‘geometrized’ units, which are connected to mass M 
and charge Q in ordinary units by MG = GM/c2 and Q& = GQ2/c4. In general, we shall 
characterize ‘geometrized’ units by a subscript G and set h = c = 1. 

The action principle for the Dirac field reads 

S I d4xKg(&y@+,, - m6+) = 0. (4) 

Here the semicolon denotes the covariant derivative of a bispinor. 6 denotes the 
conjugate of 4, i.e. 

6 = i4‘q4. ( 5 )  
Equation (4) leads to the covariant Dirac equation and its conjugate, respectively: 

and the four r k  matrices are defined by 

YIlk-{r:}Y1-rkYI+Yirk = o  (8) 

r k  = - b ’ ( Y j l k  -Yl{;})+ieAk (9)  

j k  = ie$yk+ (10) 

T, = %6(Yi+;j  + yj+;z) - t3; iy j  + $ ; j ~ r ) + I  

up to an imaginary multiple of the unit matrix. From this it follows that r k  can be 
chosen as 

where Ak are the components of the electromagnetic potential. Noether’s theorem 
applied to equation (4) gives the current density j k  and the matter tensor Ti:  

(11) 
which have the usual conservation properties and 

Tr( T,’) = T/ = m&). 
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The generalized Dirac matrices y i  are defined by 
,,,zYi + Y i Y i  = 2gif 

up to unitary transformations in Clifford space. We take: 

y l  = eA’2f1 Y = Y1 - 

y3 = r sin ef3 y 3 =  r sin-’ e?, 
y4 = - e - Y / 2  - y4 = euI2j4 7 4  

Y2 = r?2 y2= r - l j 2  
- 1  

where the j t  are the usual Dirac matrices in Minkowski space. Thus the charge density 
is 

j4 = e (15) 
The Dirac equation (6a )  now reads 

from which we get the radial equations by substituting and separating variables using 

,y = eVI4r(sin (17) 
We remark that the operator K, 

is the generalized operator K = @(cr. I + 1) known from Dirac theory in Minkowski 
space with the usual integer eigenvalues (Kx = K X ) .  Moreover, in a static gravitational 
field it is sufficient to consider only stationary solutions, so that the radial part of (16) can 
be regarded as a two-component spinor: 

,y = R(r)O(B, 4) exp(-iEx4); (19) 

which obeys the radial equations 

if we choose and f 4  to be 

V(r) is the Coulomb potential of the black hole and is given by 

V(r )  = eQ/r. 
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d s 2 =  < 

3. The Dirac (Klein-Gordon) equation in the field of an extended gravitating liquid 
drop 

2 r2 1/2 2 

- [ :( 1 - 3) 1’2 - ;( 1 - p) ] (dx 4)2 r s ro 

~ M G  -’ 
( 1 - 7 )  dr2+r2(dd2+sin2 8 d4’) 

Since, classically, a periodic motion of particles in the field of a black hole is only 
possible outside the event horizon, one normally restricts the manifold M to the region 
outside the coordinate singularities of ( 2 )  or (3) .  Then one is able to interpret the theory 
within the frame of an asymptotic observer. 

In order to understand better the results of the field equations in the restricted 
manifold, we now turn to the case without an event horizon which limits the solution of 
the Dirac (Klein-Gordon) equation and consider the Dirac (Klein-Gordon) equation in 
the field of an extended gravitating source (liquid drop) of radius ro. For the metric we 
take (Adler et a1 1965) 

with = r2/2MG. The radius ro of the drop should be greater than its Schwarzschild 
radius. Indeed, the model already breaks down for rO=QrS, because of an infinite 
pressure in the matter tensor. In order to study the process ro + rs, we have analytically 
continued the metric to the case rs < r0 s 8rs 

Note that for ro s Ers, this metric does not account for a reasonable physical situation but 
should only serve as a definition of an energy eigenvalue of a field equation in this 
region?. By means of a Hamming modified predictor corrector method (HMPC) the 
radial Dirac equations (20)  have been integrated numerically and the energy eigen- 
values have been obtained by a generalization of a procedure due to Cohen (1960). 
With a given energy value Eo we integrate (20)  from both sides to a matching point rm, 
where we match the f component to be continuous and find a corrected energy 
eigenvalue El according to 

Here the Hamiltonian 2 stands for 

t Note, that the form of the energy spectrum obtained later might depend on  the special analytic continuation. 
Physically meaningful forms of limiting procedures to the Schwarzschild geometry (e.g. in the context of 
gravitational collapse) will be investigated in a forthcoming article by the authors. 



556 M Soffel, B Muller and W Greiner 

The successive iterations converge rapidly. The results are shown in figure 1 for the 
Dirac equation. For comparison we calculated the same quantities for the Klein- 
Gordon equation (Rafelski et a1 1977). The results are nearly identical since we expect 
the spin-orbit coupling effects to be negligible. It should be noticed that the energy 
eigenvalues of all bound states (with finite numbers of nodes in their radial functions) 
tend to zero as ro+ rs and a quasi-continuum arises. We remark that the energy 
eigenvalues contain the average red-shift in the form of a factor ( ~ ~ e ” ’ 2 / ~ )  indicating the 
results obtained (Papapetrou 1956). In figure 1 we have defined continuum states as 
those which are asymptotically free, i.e. IE( 3 mc2. 

E 

Figure 1. The energy eigenvalues of the Dirac equation in the field of an extended 
gravitating source. The energies are shown as a function of the source radius ro (in units of 
the Schwarzschild radius r s ) .  

4. The solution of the Dirac equation in a Schwarzschild (Reissner-Nordstrem) 
geometry 

In the case of the extended source (incompressible fluid model) we obtain the quasi- 
continuum as ro + rs and vanishing energy eigenvalues of all bound states. So in the case 
of a coordinate singularity we expect to obtain a continuum with infinitely many nodes 
in the radial functions for energies between zero and mc2. This is shown here for the 
Dirac equation. If the black hole is charged, we require that 

Q & ~ M &  (28) 
g, this 

(29) 

in order to have an event horizon. For a black hole of solar mass MO = 2 x 
means that 0 = 1-7 X lo2’ C. The coordinate singularities lie at 

r*=MG*(M$+-QG) 2 1/2 . 
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We then restrict our manifold by introducing the r* coordinate (see equation (3)): 

dr* f dr = (30) 

The introduction of the r* coordinate means that the outer coordinate singularity (event 
horizon) r+ is projected to -00. The wavefunctions in the interior of a black hole, i.e. for 
r < r + ,  are therefore not defined. By this procedure one avoids the introduction of 
boundary conditions for the wavefunctions at r = r+. 

The radial Dirac equations (20) in r* coordinates are simply 

which have as solution a plane wave for r* -+ -00, namely 

g(r*)  = A o  sin[@ - A)r*-  S(E)] 

f(r*) ‘A0 COS[(E -A)r*- S(E)] .  

Here A=eQ/r+ is the Coulomb potential of the black hole at its outer coordinate 
singularity r+. Equation (31) has been solved numerically with the HMPC method. By 
means of (30) it has been integrated in r* coordinates from large positive to negative 
values and we looked for resonances similar to those encountered in the case of the 
Klein-Gordon equation. For convenience the resonance parameter P, which is the 
ratio of the first (r* + +CO) amplitude to the resonance amplitude (P -+ -CO) of the large 
component in equation (3 1) has been introduced. The inverse of P, is a measure for the 
probability that the resonance state decays towards the physical singularity, so reso- 
nances can be found by maximum values of Pro P, as a function of E can also be used to 
determine the width of a resonance. Typical wavefunctions of resonating and non- 
resonating type are depicted in figure 2. The results are in good agreement with those 
given in Deruelle and Ruffini (1974) and the energies of the resonances as well as the 
radial density distributions of the electron can be understood with the help of the 
effective potential. The effective potential was first derived from the classical 
Hamilton-Jacobi formalism by Christodoulou and Ruffini (197 1). For spin-4 particles 
it must be re-derived by transforming the Dirac equation (31) into a second-order 
differential equation and applying the WKB approximation. The result is the effective 
potential, which for the Reissner-Nordstmm field reads: 

For the model of the extended gravitating source it is 

One finds that pair creation in the case of a charged black hole is due to the decay of the 
vacuum in analogy to the problems of strong fields in QED. This is demonstrated in 
figure 3. Even in the case of a neutral black hole the gap between the positive and 
negative energy continuum (particle and antiparticle states) is narrowed by the attrac- 
tive gravitational interaction and vanishes for r = is. Due to the charge conjugation 
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Figure 2. (a) The wavefunction for the first (full curves, E = 0.9761m) and the second 
(broken curves, E = 0.9833m) resonances of the Dirac equation in the Schwarzschild 
metric. Parameters: MG = 1, K = 4. ( 6 )  The large component g(r*) of a typical wavefunc- 
tion off resonance. The extremum at r*=6  occurs at the innermost of the two classical 
turning points, i.e. E = V&). At this point df/dr* and dg/dr* can vanish simultaneously 
to produce the extraordinary bump. At resonance wavefunctions the bound and the 
continuum parts join smoothly in phase. 

invariance of the Schwarzschild field figure 3(u)  is symmetric with respect to E = 0. 
This is caused by the tensorial character of the pure gravitational force which is quite 
similar to the effect of a scalar interaction. 

With the introduction of a charged centre the symmetry between the electron and 
positron states is broken. Speaking in the language of hole theory, the occupied 
negative continuum is raised by a negatively charged centre and vice versa. If the Fermi 
energy is above m,c2 spontaneous electron emission (for negatively charged central 
objects), see figure 3(b) ,  or spontaneous positron emission (for positively charged 
centres) takes place. This manifests the phase transition to a charged electron-positron 
vacuum. In other words pair creation occurs if A = eQ/r+ > mec2 which leads us to a 
limiting stable charge of a black hole, namely 

Zl ime / r +  = m,c2. (35 )  2 

In contrast to the same phenomenon in superheavy atoms, the right-hand side of (35) is 
only mec2 and not 2mec2.  Effectively only one particle must be created because the 
antiparticle is absorbed by the black hole. Since Z,im is much smaller than the limit 
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Figure 3. ( a )  The effective potential for the Schwarzschild field (MG = 2, K = 50). ( b )  The 
effective potential for the Reissner-Nordstrdm field (QG = 1000, MG = 2, K = 4). Pair 
creation occurs for lA lam,c2 .  The centre is negatively charged and the decay of the 
vacuum happens via electron emission. ( c )  If the centre is positively charged (QG = -1000, 
MG = 2, K = 10) positrons are emitted for (A( z m,c2. The horizontal lines indicate the 
states of the upper continuum. 

from equation (28) ,  we can write, with r+ = 2GM/c2,  

Zli, = 2GMm,/e2.  (36) 
For black holes of one solar mass this means Zlim= 10" or a limiting charge of 
CIim= 0.16 C. This corresponds to a limiting charge-to-mass ratio per atom in a black 
hole of 

reflecting the double ratio of the gravitational ( y  = Gm;/hc)  to the electromagnetic 
(a = e 2 / h c )  coupling constant. 
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